Nuprl Lemma : cantor2baire_wf

[a:ℕ ⟶ 𝔹]. (cantor2baire(a) ∈ ℕ ⟶ ℕ)


Proof




Definitions occuring in Statement :  cantor2baire: cantor2baire(a) nat: bool: 𝔹 uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x]
Definitions unfolded in proof :  bfalse: ff top: Top exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k ge: i ≥  int_seg: {i..j-} guard: {T} uiff: uiff(P;Q) ifthenelse: if then else fi  btrue: tt it: unit: Unit bool: 𝔹 all: x:A. B[x] uimplies: supposing a subtype_rel: A ⊆B prop: implies:  Q not: ¬A false: False less_than': less_than'(a;b) and: P ∧ Q le: A ≤ B nat: cantor2baire: cantor2baire(a) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  int_seg_wf equal_wf int_formula_prop_wf int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermAdd_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le int_seg_properties nat_properties eqtt_to_assert bool_wf int_seg_subtype_nat le_wf false_wf nat_wf primrec_wf
Rules used in proof :  functionEquality axiomEquality independent_functionElimination equalitySymmetry equalityTransitivity computeAll voidEquality voidElimination isect_memberEquality intEquality int_eqEquality dependent_pairFormation dependent_functionElimination addEquality productElimination equalityElimination unionElimination independent_isectElimination rename setElimination because_Cache functionExtensionality applyEquality lambdaFormation independent_pairFormation natural_numberEquality dependent_set_memberEquality hypothesisEquality hypothesis thin isectElimination sqequalHypSubstitution extract_by_obid lambdaEquality sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}].  (cantor2baire(a)  \mmember{}  \mBbbN{}  {}\mrightarrow{}  \mBbbN{})



Date html generated: 2017_04_20-AM-07_38_07
Last ObjectModification: 2017_04_19-PM-03_35_45

Theory : continuity


Home Index