Nuprl Lemma : strong-continuity4_wf

[T:Type]. ∀[F:(ℕ ⟶ T) ⟶ ℕ].  (strong-continuity4(T;F) ∈ ℙ)


Proof




Definitions occuring in Statement :  strong-continuity4: strong-continuity4(T;F) nat: uall: [x:A]. B[x] prop: member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q not: ¬A false: False less_than': less_than'(a;b) le: A ≤ B uimplies: supposing a so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q prop: so_lambda: λ2x.t[x] nat: strong-continuity4: strong-continuity4(T;F) member: t ∈ T uall: [x:A]. B[x]
Lemmas referenced :  isl_wf assert_wf subtype_rel_union false_wf int_seg_subtype_nat subtype_rel_dep_function equal_wf all_wf unit_wf2 int_seg_wf nat_wf exists_wf
Rules used in proof :  universeEquality isect_memberEquality equalitySymmetry equalityTransitivity axiomEquality inlEquality lambdaFormation independent_pairFormation independent_isectElimination functionExtensionality applyEquality productEquality lambdaEquality unionEquality hypothesisEquality cumulativity because_Cache rename setElimination natural_numberEquality hypothesis functionEquality thin isectElimination sqequalHypSubstitution extract_by_obid sqequalRule cut introduction isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[T:Type].  \mforall{}[F:(\mBbbN{}  {}\mrightarrow{}  T)  {}\mrightarrow{}  \mBbbN{}].    (strong-continuity4(T;F)  \mmember{}  \mBbbP{})



Date html generated: 2017_09_29-PM-06_05_22
Last ObjectModification: 2017_09_03-PM-09_54_30

Theory : continuity


Home Index