Nuprl Lemma : map-simplify-test
∀[H,f,g:Base]. ∀[L:Atom List].  (map(λx.H[if x ∈b L then f[x] else g[x] fi ];L) ~ map(λx.H[f[x]];L))
Proof
Definitions occuring in Statement : 
deq-member: x ∈b L, 
map: map(f;as), 
list: T List, 
atom-deq: AtomDeq, 
ifthenelse: if b then t else f fi , 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
lambda: λx.A[x], 
base: Base, 
atom: Atom, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
exists: ∃x:A. B[x], 
prop: ℙ, 
or: P ∨ Q, 
sq_type: SQType(T), 
guard: {T}, 
bnot: ¬bb, 
assert: ↑b, 
false: False, 
not: ¬A, 
rev_implies: P ⇐ Q
Lemmas referenced : 
map_functionality_wrt_sq, 
atom_subtype_base, 
list_subtype_base, 
deq-member_wf, 
atom-deq_wf, 
bool_wf, 
eqtt_to_assert, 
assert-deq-member, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
l_member_wf, 
list_wf, 
base_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
atomEquality, 
independent_isectElimination, 
hypothesis, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
hypothesisEquality, 
applyEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
because_Cache, 
productElimination, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
promote_hyp, 
instantiate, 
cumulativity, 
voidElimination, 
sqequalAxiom, 
isect_memberEquality
Latex:
\mforall{}[H,f,g:Base].  \mforall{}[L:Atom  List].    (map(\mlambda{}x.H[if  x  \mmember{}\msubb{}  L  then  f[x]  else  g[x]  fi  ];L)  \msim{}  map(\mlambda{}x.H[f[x]];L))
Date html generated:
2017_04_17-AM-09_08_50
Last ObjectModification:
2017_02_27-PM-05_17_07
Theory : decidable!equality
Home
Index