Nuprl Lemma : decidable__exists_length

[T:Type]. ∀[P:(T List) ⟶ ℙ].
  ((∀L:T List. Dec(P[L]))  (∃k:ℕ~ ℕk)  (∀n:ℕDec(∃L:T List. ((||L|| n ∈ ℤ) ∧ P[L]))))


Proof




Definitions occuring in Statement :  equipollent: B length: ||as|| list: List int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] prop: so_apply: x[s] all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] implies:  Q all: x:A. B[x] exists: x:A. B[x] member: t ∈ T prop: so_lambda: λ2x.t[x] nat: so_apply: x[s] equipollent: B biject: Bij(A;B;f) and: P ∧ Q surject: Surj(A;B;f) subtype_rel: A ⊆B decidable: Dec(P) or: P ∨ Q guard: {T} pi1: fst(t) cand: c∧ B not: ¬A false: False inject: Inj(A;B;f)
Lemmas referenced :  nat_wf exists_wf equipollent_wf int_seg_wf all_wf list_wf decidable_wf equipollent-list decidable__exists_int_seg exp_wf2 equal_wf length_wf not_wf set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation sqequalHypSubstitution productElimination thin cut introduction extract_by_obid hypothesis isectElimination sqequalRule lambdaEquality cumulativity hypothesisEquality natural_numberEquality setElimination rename applyEquality functionExtensionality functionEquality universeEquality dependent_functionElimination independent_functionElimination promote_hyp instantiate because_Cache setEquality intEquality unionElimination inlFormation productEquality inrFormation dependent_set_memberEquality dependent_pairFormation equalityTransitivity equalitySymmetry independent_pairFormation voidElimination addLevel hyp_replacement levelHypothesis

Latex:
\mforall{}[T:Type].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}L:T  List.  Dec(P[L]))  {}\mRightarrow{}  (\mexists{}k:\mBbbN{}.  T  \msim{}  \mBbbN{}k)  {}\mRightarrow{}  (\mforall{}n:\mBbbN{}.  Dec(\mexists{}L:T  List.  ((||L||  =  n)  \mwedge{}  P[L]))))



Date html generated: 2017_04_17-AM-09_36_04
Last ObjectModification: 2017_02_27-PM-05_34_11

Theory : equipollence!!cardinality!


Home Index