Nuprl Lemma : equipollent-product-one

[A:Type]. (A × ℕA ∧ ℕ1 × A)


Proof




Definitions occuring in Statement :  equipollent: B int_seg: {i..j-} uall: [x:A]. B[x] and: P ∧ Q product: x:A × B[x] natural_number: $n universe: Type
Definitions unfolded in proof :  rev_implies:  Q and: P ∧ Q iff: ⇐⇒ Q implies:  Q member: t ∈ T uall: [x:A]. B[x] prop: top: Top not: ¬A false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) or: P ∨ Q decidable: Dec(P) lelt: i ≤ j < k int_seg: {i..j-} guard: {T} all: x:A. B[x] uimplies: supposing a true: True squash: T less_than: a < b less_than': less_than'(a;b) le: A ≤ B cand: c∧ B
Lemmas referenced :  top_wf int_seg_wf equipollent_wf equipollent_functionality_wrt_equipollent equipollent-identity-right equipollent_weakening_ext-eq ext-eq_weakening equipollent-identity-left product_functionality_wrt_equipollent_right product_functionality_wrt_equipollent_left false_wf equipollent-unit int_seg_properties decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformless_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__le decidable__lt lelt_wf equipollent_functionality_wrt_equipollent2 unit_wf2 top-equipollent-unit
Rules used in proof :  cut productElimination independent_functionElimination hypothesis natural_numberEquality thin isectElimination sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution sqequalHypSubstitution lemma_by_obid because_Cache dependent_set_memberEquality computeAll independent_pairFormation sqequalRule voidEquality voidElimination isect_memberEquality intEquality int_eqEquality lambdaEquality dependent_pairFormation unionElimination dependent_functionElimination rename setElimination hypothesisEquality lambdaFormation independent_isectElimination baseClosed imageMemberEquality introduction isect_memberFormation universeEquality productEquality extract_by_obid addLevel

Latex:
\mforall{}[A:Type].  (A  \mtimes{}  \mBbbN{}1  \msim{}  A  \mwedge{}  \mBbbN{}1  \mtimes{}  A  \msim{}  A)



Date html generated: 2019_06_20-PM-02_17_03
Last ObjectModification: 2018_08_24-PM-11_37_00

Theory : equipollence!!cardinality!


Home Index