Nuprl Lemma : fset-all-filter

[T:Type]. ∀[eq:EqDecider(T)]. ∀[P:T ⟶ 𝔹]. ∀[s:fset(T)].  fset-all({x ∈ P[x]};x.P[x])


Proof




Definitions occuring in Statement :  fset-all: fset-all(s;x.P[x]) fset-filter: {x ∈ P[x]} fset: fset(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a prop: implies:  Q iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) guard: {T} sq_type: SQType(T) all: x:A. B[x] assert: b ifthenelse: if then else fi  btrue: tt true: True fset-all: fset-all(s;x.P[x])
Lemmas referenced :  deq_wf fset_wf bnot_wf fset-null_wf assert_witness bool_subtype_base bool_wf subtype_base_sq assert_elim member-fset-filter assert_wf fset-member_wf isect_wf uall_wf fset-filter_wf fset-all_wf iff_weakening_uiff fset-all-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality sqequalRule lambdaEquality applyEquality hypothesis independent_functionElimination productElimination because_Cache independent_isectElimination instantiate cumulativity dependent_functionElimination equalityTransitivity equalitySymmetry natural_numberEquality isect_memberEquality functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[P:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[s:fset(T)].    fset-all(\{x  \mmember{}  s  |  P[x]\};x.P[x])



Date html generated: 2016_05_14-PM-03_41_27
Last ObjectModification: 2016_01_19-AM-10_36_02

Theory : finite!sets


Home Index