Nuprl Lemma : fset-map_wf
∀[T,X:Type]. ∀[f:T ⟶ X]. ∀[s:fset(T)]. (fset-map(f;s) ∈ fset(X))
Proof
Definitions occuring in Statement :
fset-map: fset-map(f;s)
,
fset: fset(T)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
function: x:A ⟶ B[x]
,
universe: Type
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
fset: fset(T)
,
quotient: x,y:A//B[x; y]
,
and: P ∧ Q
,
so_lambda: λ2x y.t[x; y]
,
so_apply: x[s1;s2]
,
uimplies: b supposing a
,
all: ∀x:A. B[x]
,
fset-map: fset-map(f;s)
,
implies: P
⇒ Q
,
set-equal: set-equal(T;x;y)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
exists: ∃x:A. B[x]
Lemmas referenced :
fset_wf,
quotient-member-eq,
list_wf,
set-equal_wf,
set-equal-equiv,
map_wf,
member-map,
l_member_wf,
all_wf,
iff_wf,
exists_wf,
equal_wf,
equal-wf-base
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
pointwiseFunctionalityForEquality,
extract_by_obid,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
hypothesis,
sqequalRule,
pertypeElimination,
productElimination,
lambdaEquality,
independent_isectElimination,
dependent_functionElimination,
functionExtensionality,
applyEquality,
independent_functionElimination,
equalityTransitivity,
equalitySymmetry,
lambdaFormation,
because_Cache,
addLevel,
allFunctionality,
independent_pairFormation,
impliesFunctionality,
productEquality,
axiomEquality,
isect_memberEquality,
functionEquality,
universeEquality,
existsFunctionality,
andLevelFunctionality,
existsLevelFunctionality
Latex:
\mforall{}[T,X:Type]. \mforall{}[f:T {}\mrightarrow{} X]. \mforall{}[s:fset(T)]. (fset-map(f;s) \mmember{} fset(X))
Date html generated:
2017_04_17-AM-09_19_33
Last ObjectModification:
2017_02_27-PM-05_23_01
Theory : finite!sets
Home
Index