Nuprl Lemma : fset-map_wf
∀[T,X:Type]. ∀[f:T ⟶ X]. ∀[s:fset(T)].  (fset-map(f;s) ∈ fset(X))
Proof
Definitions occuring in Statement : 
fset-map: fset-map(f;s)
, 
fset: fset(T)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
fset: fset(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
uimplies: b supposing a
, 
all: ∀x:A. B[x]
, 
fset-map: fset-map(f;s)
, 
implies: P 
⇒ Q
, 
set-equal: set-equal(T;x;y)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
Lemmas referenced : 
fset_wf, 
quotient-member-eq, 
list_wf, 
set-equal_wf, 
set-equal-equiv, 
map_wf, 
member-map, 
l_member_wf, 
all_wf, 
iff_wf, 
exists_wf, 
equal_wf, 
equal-wf-base
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
pointwiseFunctionalityForEquality, 
extract_by_obid, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
hypothesis, 
sqequalRule, 
pertypeElimination, 
productElimination, 
lambdaEquality, 
independent_isectElimination, 
dependent_functionElimination, 
functionExtensionality, 
applyEquality, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
because_Cache, 
addLevel, 
allFunctionality, 
independent_pairFormation, 
impliesFunctionality, 
productEquality, 
axiomEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
existsFunctionality, 
andLevelFunctionality, 
existsLevelFunctionality
Latex:
\mforall{}[T,X:Type].  \mforall{}[f:T  {}\mrightarrow{}  X].  \mforall{}[s:fset(T)].    (fset-map(f;s)  \mmember{}  fset(X))
Date html generated:
2017_04_17-AM-09_19_33
Last ObjectModification:
2017_02_27-PM-05_23_01
Theory : finite!sets
Home
Index