Nuprl Lemma : fset-map_wf

[T,X:Type]. ∀[f:T ⟶ X]. ∀[s:fset(T)].  (fset-map(f;s) ∈ fset(X))


Proof




Definitions occuring in Statement :  fset-map: fset-map(f;s) fset: fset(T) uall: [x:A]. B[x] member: t ∈ T function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T fset: fset(T) quotient: x,y:A//B[x; y] and: P ∧ Q so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a all: x:A. B[x] fset-map: fset-map(f;s) implies:  Q set-equal: set-equal(T;x;y) iff: ⇐⇒ Q rev_implies:  Q prop: so_lambda: λ2x.t[x] so_apply: x[s] exists: x:A. B[x]
Lemmas referenced :  fset_wf quotient-member-eq list_wf set-equal_wf set-equal-equiv map_wf member-map l_member_wf all_wf iff_wf exists_wf equal_wf equal-wf-base
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality extract_by_obid isectElimination thin cumulativity hypothesisEquality hypothesis sqequalRule pertypeElimination productElimination lambdaEquality independent_isectElimination dependent_functionElimination functionExtensionality applyEquality independent_functionElimination equalityTransitivity equalitySymmetry lambdaFormation because_Cache addLevel allFunctionality independent_pairFormation impliesFunctionality productEquality axiomEquality isect_memberEquality functionEquality universeEquality existsFunctionality andLevelFunctionality existsLevelFunctionality

Latex:
\mforall{}[T,X:Type].  \mforall{}[f:T  {}\mrightarrow{}  X].  \mforall{}[s:fset(T)].    (fset-map(f;s)  \mmember{}  fset(X))



Date html generated: 2017_04_17-AM-09_19_33
Last ObjectModification: 2017_02_27-PM-05_23_01

Theory : finite!sets


Home Index