Nuprl Lemma : find-ge_wf

[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  find-ge(f;n) ∈ {n':ℤ(n ≤ n') ∧ n' tt}  supposing ∃m:{n...}. ∀k:{m...}. tt


Proof




Definitions occuring in Statement :  find-ge: find-ge(f;n) int_upper: {i...} btrue: tt bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B all: x:A. B[x] exists: x:A. B[x] and: P ∧ Q member: t ∈ T set: {x:A| B[x]}  apply: a function: x:A ⟶ B[x] int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a find-ge: find-ge(f;n) int_upper: {i...} exists: x:A. B[x] all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top prop: nat_plus: + less_than: a < b squash: T less_than': less_than'(a;b) true: True and: P ∧ Q subtype_rel: A ⊆B pi1: fst(t) so_lambda: λ2x.t[x] guard: {T} so_apply: x[s]
Lemmas referenced :  int_formula_prop_and_lemma intformand_wf int_upper_properties int_upper_subtype_int_upper all_wf int_upper_wf exists_wf equal_wf int_subtype_base equal-wf-base or_wf bool_wf equal-wf-T-base less_than_wf le_wf int_formula_prop_wf int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma itermVar_wf intformle_wf intformnot_wf satisfiable-full-omega-tt decidable__le find-xover_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule lemma_by_obid sqequalHypSubstitution isectElimination thin because_Cache dependent_set_memberEquality hypothesisEquality productElimination dependent_functionElimination hypothesis unionElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairFormation imageMemberEquality baseClosed productEquality setEquality applyEquality lambdaFormation setElimination rename baseApply closedConclusion addEquality equalityTransitivity equalitySymmetry independent_functionElimination axiomEquality functionEquality

Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    find-ge(f;n)  \mmember{}  \{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  f  n'  =  tt\}    supposing  \mexists{}m:\{n...\}.  \mforall{}k:\{m..\000C.\}.  f  k  =  tt



Date html generated: 2016_05_14-AM-07_28_30
Last ObjectModification: 2016_01_14-PM-09_59_03

Theory : int_2


Home Index