Nuprl Lemma : find-ge_wf
∀[n:ℤ]. ∀[f:{n...} ⟶ 𝔹].  find-ge(f;n) ∈ {n':ℤ| (n ≤ n') ∧ f n' = tt}  supposing ∃m:{n...}. ∀k:{m...}. f k = tt
Proof
Definitions occuring in Statement : 
find-ge: find-ge(f;n)
, 
int_upper: {i...}
, 
btrue: tt
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
find-ge: find-ge(f;n)
, 
int_upper: {i...}
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
true: True
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
pi1: fst(t)
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
, 
so_apply: x[s]
Lemmas referenced : 
int_formula_prop_and_lemma, 
intformand_wf, 
int_upper_properties, 
int_upper_subtype_int_upper, 
all_wf, 
int_upper_wf, 
exists_wf, 
equal_wf, 
int_subtype_base, 
equal-wf-base, 
or_wf, 
bool_wf, 
equal-wf-T-base, 
less_than_wf, 
le_wf, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
itermVar_wf, 
intformle_wf, 
intformnot_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
find-xover_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
dependent_set_memberEquality, 
hypothesisEquality, 
productElimination, 
dependent_functionElimination, 
hypothesis, 
unionElimination, 
natural_numberEquality, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairFormation, 
imageMemberEquality, 
baseClosed, 
productEquality, 
setEquality, 
applyEquality, 
lambdaFormation, 
setElimination, 
rename, 
baseApply, 
closedConclusion, 
addEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
axiomEquality, 
functionEquality
Latex:
\mforall{}[n:\mBbbZ{}].  \mforall{}[f:\{n...\}  {}\mrightarrow{}  \mBbbB{}].    find-ge(f;n)  \mmember{}  \{n':\mBbbZ{}|  (n  \mleq{}  n')  \mwedge{}  f  n'  =  tt\}    supposing  \mexists{}m:\{n...\}.  \mforall{}k:\{m..\000C.\}.  f  k  =  tt
Date html generated:
2016_05_14-AM-07_28_30
Last ObjectModification:
2016_01_14-PM-09_59_03
Theory : int_2
Home
Index