Nuprl Lemma : implies-equal-div2

[a,c:ℤ]. ∀[b:ℤ-o].  (a ÷ b) c ∈ ℤ supposing (b c) ∈ ℤ


Proof




Definitions occuring in Statement :  int_nzero: -o uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o true: True nequal: a ≠ b ∈  not: ¬A implies:  Q sq_type: SQType(T) all: x:A. B[x] guard: {T} false: False prop: decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  implies-equal-div subtype_base_sq int_subtype_base nequal_wf int_nzero_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermMultiply_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_mul_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf div_one set_subtype_base int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_set_memberEquality_alt natural_numberEquality lambdaFormation_alt instantiate cumulativity intEquality independent_isectElimination hypothesis dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination voidElimination equalityIstype inhabitedIsType baseClosed sqequalBase universeIsType setElimination rename because_Cache unionElimination approximateComputation dependent_pairFormation_alt lambdaEquality_alt int_eqEquality isect_memberEquality_alt sqequalRule independent_pairFormation applyEquality baseApply closedConclusion axiomEquality isectIsTypeImplies

Latex:
\mforall{}[a,c:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  b)  =  c  supposing  a  =  (b  *  c)



Date html generated: 2020_05_19-PM-09_41_23
Last ObjectModification: 2019_10_16-PM-04_24_14

Theory : int_2


Home Index