Nuprl Lemma : implies-equal-div2
∀[a,c:ℤ]. ∀[b:ℤ-o].  (a ÷ b) = c ∈ ℤ supposing a = (b * c) ∈ ℤ
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
divide: n ÷ m
, 
multiply: n * m
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
true: True
, 
nequal: a ≠ b ∈ T 
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
false: False
, 
prop: ℙ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
implies-equal-div, 
subtype_base_sq, 
int_subtype_base, 
nequal_wf, 
int_nzero_properties, 
decidable__equal_int, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermMultiply_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_mul_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
div_one, 
set_subtype_base, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
dependent_set_memberEquality_alt, 
natural_numberEquality, 
lambdaFormation_alt, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
voidElimination, 
equalityIstype, 
inhabitedIsType, 
baseClosed, 
sqequalBase, 
universeIsType, 
setElimination, 
rename, 
because_Cache, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
sqequalRule, 
independent_pairFormation, 
applyEquality, 
baseApply, 
closedConclusion, 
axiomEquality, 
isectIsTypeImplies
Latex:
\mforall{}[a,c:\mBbbZ{}].  \mforall{}[b:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  b)  =  c  supposing  a  =  (b  *  c)
Date html generated:
2020_05_19-PM-09_41_23
Last ObjectModification:
2019_10_16-PM-04_24_14
Theory : int_2
Home
Index