Nuprl Lemma : implies-equal-div

[a,c:ℤ]. ∀[b,d:ℤ-o].  (a ÷ b) (c ÷ d) ∈ ℤ supposing (d a) (b c) ∈ ℤ


Proof




Definitions occuring in Statement :  int_nzero: -o uimplies: supposing a uall: [x:A]. B[x] divide: n ÷ m multiply: m int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o nequal: a ≠ b ∈  not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False all: x:A. B[x] top: Top and: P ∧ Q prop: subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] true: True squash: T decidable: Dec(P) or: P ∨ Q guard: {T} iff: ⇐⇒ Q rev_implies:  Q uiff: uiff(P;Q)
Lemmas referenced :  div_rem_sum mul_preserves_eq mul_cancel_in_eq divide_wfa int_entire_a int_nzero_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformnot_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_not_lemma int_formula_prop_wf int_subtype_base nequal_wf set_subtype_base remainder_wfa squash_wf true_wf int_nzero_wf decidable__equal_int itermMultiply_wf int_term_value_mul_lemma equal_wf istype-universe rem-mul subtype_rel_self iff_weakening_equal add-is-int-iff multiply-is-int-iff itermAdd_wf int_term_value_add_lemma false_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality because_Cache equalityTransitivity equalitySymmetry hypothesis setElimination rename independent_isectElimination dependent_set_memberEquality_alt multiplyEquality lambdaFormation_alt natural_numberEquality approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType equalityIstype applyEquality baseClosed sqequalBase intEquality inhabitedIsType baseApply closedConclusion axiomEquality isectIsTypeImplies imageElimination unionElimination imageMemberEquality instantiate universeEquality productElimination pointwiseFunctionality promote_hyp

Latex:
\mforall{}[a,c:\mBbbZ{}].  \mforall{}[b,d:\mBbbZ{}\msupminus{}\msupzero{}].    (a  \mdiv{}  b)  =  (c  \mdiv{}  d)  supposing  (d  *  a)  =  (b  *  c)



Date html generated: 2020_05_19-PM-09_41_16
Last ObjectModification: 2019_10_16-PM-03_47_23

Theory : int_2


Home Index