Nuprl Lemma : rem_fun_sat_rem_nrel

a:ℕ. ∀n:ℕ+.  Rem(a;n;a rem n)


Proof




Definitions occuring in Statement :  rem_nrel: Rem(a;n;r) nat_plus: + nat: all: x:A. B[x] remainder: rem m
Definitions unfolded in proof :  rem_nrel: Rem(a;n;r) all: x:A. B[x] member: t ∈ T exists: x:A. B[x] uall: [x:A]. B[x] prop: and: P ∧ Q nat: nat_plus: + nequal: a ≠ b ∈  ge: i ≥  not: ¬A implies:  Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) false: False top: Top subtype_rel: A ⊆B int_nzero: -o so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  nat_plus_wf nat_wf divide_wf div_nrel_wf equal_wf nat_properties nat_plus_properties full-omega-unsat intformand_wf intformeq_wf itermVar_wf itermConstant_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_less_lemma int_formula_prop_wf equal-wf-base int_subtype_base div_fun_sat_div_nrel div_rem_sum subtype_rel_sets less_than_wf nequal_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep lambdaFormation cut introduction extract_by_obid hypothesis dependent_pairFormation sqequalHypSubstitution isectElimination thin hypothesisEquality productEquality intEquality addEquality multiplyEquality setElimination rename because_Cache remainderEquality natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination lambdaEquality int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_pairFormation applyEquality baseClosed setEquality equalitySymmetry

Latex:
\mforall{}a:\mBbbN{}.  \mforall{}n:\mBbbN{}\msupplus{}.    Rem(a;n;a  rem  n)



Date html generated: 2019_06_20-PM-01_14_42
Last ObjectModification: 2018_09_17-PM-05_47_56

Theory : int_2


Home Index