Nuprl Lemma : firstn-mklist1

[m,n:ℕ]. ∀[f:ℕm ⟶ Top].  ((n ≤ m)  (firstn(n;mklist(m;f)) mklist(n;f)))


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) firstn: firstn(n;as) int_seg: {i..j-} nat: uall: [x:A]. B[x] top: Top le: A ≤ B implies:  Q function: x:A ⟶ B[x] natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q prop: nat: uimplies: supposing a sq_type: SQType(T) all: x:A. B[x] guard: {T} squash: T true: True subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] or: P ∨ Q bnot: ¬bb assert: b false: False not: ¬A
Lemmas referenced :  le_wf int_seg_wf top_wf nat_wf firstn-mklist subtype_base_sq int_subtype_base equal_wf squash_wf true_wf imin_unfold iff_weakening_equal le_int_wf bool_wf eqtt_to_assert assert_of_le_int eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination sqequalAxiom because_Cache functionEquality natural_numberEquality isect_memberEquality instantiate cumulativity intEquality independent_isectElimination equalityTransitivity equalitySymmetry independent_functionElimination applyEquality imageElimination universeEquality imageMemberEquality baseClosed productElimination unionElimination equalityElimination dependent_pairFormation promote_hyp voidElimination

Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  Top].    ((n  \mleq{}  m)  {}\mRightarrow{}  (firstn(n;mklist(m;f))  \msim{}  mklist(n;f)))



Date html generated: 2017_04_17-AM-08_01_41
Last ObjectModification: 2017_02_27-PM-04_31_53

Theory : list_1


Home Index