Nuprl Lemma : firstn-mklist1
∀[m,n:ℕ]. ∀[f:ℕm ⟶ Top].  ((n ≤ m) 
⇒ (firstn(n;mklist(m;f)) ~ mklist(n;f)))
Proof
Definitions occuring in Statement : 
mklist: mklist(n;f)
, 
firstn: firstn(n;as)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
le: A ≤ B
, 
implies: P 
⇒ Q
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat: ℕ
, 
uimplies: b supposing a
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
guard: {T}
, 
squash: ↓T
, 
true: True
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
bnot: ¬bb
, 
assert: ↑b
, 
false: False
, 
not: ¬A
Lemmas referenced : 
le_wf, 
int_seg_wf, 
top_wf, 
nat_wf, 
firstn-mklist, 
subtype_base_sq, 
int_subtype_base, 
equal_wf, 
squash_wf, 
true_wf, 
imin_unfold, 
iff_weakening_equal, 
le_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
sqequalAxiom, 
because_Cache, 
functionEquality, 
natural_numberEquality, 
isect_memberEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
applyEquality, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
productElimination, 
unionElimination, 
equalityElimination, 
dependent_pairFormation, 
promote_hyp, 
voidElimination
Latex:
\mforall{}[m,n:\mBbbN{}].  \mforall{}[f:\mBbbN{}m  {}\mrightarrow{}  Top].    ((n  \mleq{}  m)  {}\mRightarrow{}  (firstn(n;mklist(m;f))  \msim{}  mklist(n;f)))
Date html generated:
2017_04_17-AM-08_01_41
Last ObjectModification:
2017_02_27-PM-04_31_53
Theory : list_1
Home
Index