Nuprl Lemma : isl-first-success

[T:Type]. ∀[A:T ⟶ Type].
  ∀f:x:T ⟶ (A[x]?). ∀L:T List.
    ((↑isl(first-success(f;L)))
     (fst(outl(first-success(f;L))) < ||L||
       ∧ ((f L[fst(outl(first-success(f;L)))])
         (inl (snd(outl(first-success(f;L)))))
         ∈ (A[L[fst(outl(first-success(f;L)))]]?))
       ∧ (∀x∈firstn(fst(outl(first-success(f;L)));L).↑isr(f x))))


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) l_all: (∀x∈L.P[x]) first-success: first-success(f;L) select: L[n] length: ||as|| list: List outl: outl(x) assert: b isr: isr(x) isl: isl(x) less_than: a < b uall: [x:A]. B[x] so_apply: x[s] pi1: fst(t) pi2: snd(t) all: x:A. B[x] implies:  Q and: P ∧ Q unit: Unit apply: a function: x:A ⟶ B[x] inl: inl x union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a guard: {T} int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top prop: less_than: a < b squash: T isl: isl(x) outl: outl(x) assert: b ifthenelse: if then else fi  btrue: tt pi1: fst(t) pi2: snd(t) iff: ⇐⇒ Q cand: c∧ B unit: Unit bfalse: ff
Lemmas referenced :  first-success_wf select_wf int_seg_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma first-success-is-inl true_wf false_wf equal_wf assert_wf isl_wf int_seg_wf length_wf unit_wf2 list_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesisEquality sqequalRule lambdaEquality applyEquality functionExtensionality hypothesis unionEquality productEquality because_Cache independent_isectElimination setElimination rename productElimination dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality independent_pairFormation computeAll imageElimination independent_functionElimination equalityElimination equalityTransitivity equalitySymmetry functionEquality universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].
    \mforall{}f:x:T  {}\mrightarrow{}  (A[x]?).  \mforall{}L:T  List.
        ((\muparrow{}isl(first-success(f;L)))
        {}\mRightarrow{}  (fst(outl(first-success(f;L)))  <  ||L||
              \mwedge{}  ((f  L[fst(outl(first-success(f;L)))])  =  (inl  (snd(outl(first-success(f;L))))))
              \mwedge{}  (\mforall{}x\mmember{}firstn(fst(outl(first-success(f;L)));L).\muparrow{}isr(f  x))))



Date html generated: 2017_04_14-AM-09_23_42
Last ObjectModification: 2017_02_27-PM-03_58_26

Theory : list_1


Home Index