Nuprl Lemma : isl-first-success
∀[T:Type]. ∀[A:T ⟶ Type].
  ∀f:x:T ⟶ (A[x]?). ∀L:T List.
    ((↑isl(first-success(f;L)))
    
⇒ (fst(outl(first-success(f;L))) < ||L||
       ∧ ((f L[fst(outl(first-success(f;L)))])
         = (inl (snd(outl(first-success(f;L)))))
         ∈ (A[L[fst(outl(first-success(f;L)))]]?))
       ∧ (∀x∈firstn(fst(outl(first-success(f;L)));L).↑isr(f x))))
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
l_all: (∀x∈L.P[x])
, 
first-success: first-success(f;L)
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
outl: outl(x)
, 
assert: ↑b
, 
isr: isr(x)
, 
isl: isl(x)
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
unit: Unit
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
inl: inl x
, 
union: left + right
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
less_than: a < b
, 
squash: ↓T
, 
isl: isl(x)
, 
outl: outl(x)
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
iff: P 
⇐⇒ Q
, 
cand: A c∧ B
, 
unit: Unit
, 
bfalse: ff
Lemmas referenced : 
first-success_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
first-success-is-inl, 
true_wf, 
false_wf, 
equal_wf, 
assert_wf, 
isl_wf, 
int_seg_wf, 
length_wf, 
unit_wf2, 
list_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
unionEquality, 
productEquality, 
because_Cache, 
independent_isectElimination, 
setElimination, 
rename, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
imageElimination, 
independent_functionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[A:T  {}\mrightarrow{}  Type].
    \mforall{}f:x:T  {}\mrightarrow{}  (A[x]?).  \mforall{}L:T  List.
        ((\muparrow{}isl(first-success(f;L)))
        {}\mRightarrow{}  (fst(outl(first-success(f;L)))  <  ||L||
              \mwedge{}  ((f  L[fst(outl(first-success(f;L)))])  =  (inl  (snd(outl(first-success(f;L))))))
              \mwedge{}  (\mforall{}x\mmember{}firstn(fst(outl(first-success(f;L)));L).\muparrow{}isr(f  x))))
Date html generated:
2017_04_14-AM-09_23_42
Last ObjectModification:
2017_02_27-PM-03_58_26
Theory : list_1
Home
Index