Nuprl Lemma : list_accum_permute

[T,A:Type]. ∀[g:T ⟶ A]. ∀[f:A ⟶ A ⟶ A].
  (∀[as,bs:T List]. ∀[n:A].
     (accumulate (with value and list item z):
       f[a;g[z]]
      over list:
        as bs
      with starting value:
       n)
     accumulate (with value and list item z):
        f[a;g[z]]
       over list:
         bs as
       with starting value:
        n)
     ∈ A)) supposing 
     (Assoc(A;λx,y. f[x;y]) and 
     Comm(A;λx,y. f[x;y]))


Proof




Definitions occuring in Statement :  append: as bs list_accum: list_accum list: List comm: Comm(T;op) assoc: Assoc(T;op) uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s1;s2] so_apply: x[s] lambda: λx.A[x] function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] implies:  Q append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] subtype_rel: A ⊆B squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q
Lemmas referenced :  list_induction uall_wf list_wf equal_wf list_accum_wf append_wf list_ind_nil_lemma append_nil_sq subtype_rel_list top_wf list_ind_cons_lemma list_accum_cons_lemma squash_wf true_wf cons_wf iff_weakening_equal assoc_wf comm_wf list_accum_append list_accum_permute1 list_accum_nil_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis because_Cache applyEquality functionExtensionality independent_functionElimination dependent_functionElimination isect_memberEquality voidElimination voidEquality independent_isectElimination axiomEquality lambdaFormation rename imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality productElimination functionEquality

Latex:
\mforall{}[T,A:Type].  \mforall{}[g:T  {}\mrightarrow{}  A].  \mforall{}[f:A  {}\mrightarrow{}  A  {}\mrightarrow{}  A].
    (\mforall{}[as,bs:T  List].  \mforall{}[n:A].
          (accumulate  (with  value  a  and  list  item  z):
              f[a;g[z]]
            over  list:
                as  @  bs
            with  starting  value:
              n)
          =  accumulate  (with  value  a  and  list  item  z):
                f[a;g[z]]
              over  list:
                  bs  @  as
              with  starting  value:
                n)))  supposing 
          (Assoc(A;\mlambda{}x,y.  f[x;y])  and 
          Comm(A;\mlambda{}x,y.  f[x;y]))



Date html generated: 2017_04_17-AM-07_38_02
Last ObjectModification: 2017_02_27-PM-04_11_39

Theory : list_1


Home Index