Nuprl Lemma : mklist-add1

[n:ℕ]. ∀[f:Top].  (mklist(n 1;f) mklist(n;f) [f n])


Proof




Definitions occuring in Statement :  mklist: mklist(n;f) append: as bs cons: [a b] nil: [] nat: uall: [x:A]. B[x] top: Top apply: a add: m natural_number: $n sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T mklist: mklist(n;f) nat: top: Top all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A prop: bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b
Lemmas referenced :  top_wf nat_wf primrec-unroll eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int nat_properties satisfiable-full-omega-tt intformand_wf intformeq_wf itermAdd_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int add-subtract-cancel
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis sqequalAxiom extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality because_Cache addEquality setElimination rename natural_numberEquality voidElimination voidEquality lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination independent_pairFormation computeAll promote_hyp instantiate cumulativity independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f:Top].    (mklist(n  +  1;f)  \msim{}  mklist(n;f)  @  [f  n])



Date html generated: 2017_04_17-AM-07_42_10
Last ObjectModification: 2017_02_27-PM-04_14_44

Theory : list_1


Home Index