Nuprl Lemma : permutation-split2
∀[A:Type]
  ∀p,q:A ⟶ 𝔹.  ((∀a:A. (↑q[a] 
⇐⇒ ¬↑p[a])) 
⇒ (∀L:A List. permutation(A;filter(λx.p[x];L) @ filter(λx.q[x];L);L)))
Proof
Definitions occuring in Statement : 
permutation: permutation(T;L1;L2)
, 
filter: filter(P;l)
, 
append: as @ bs
, 
list: T List
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
squash: ↓T
, 
so_apply: x[s]
, 
uimplies: b supposing a
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
not: ¬A
, 
false: False
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
true: True
, 
so_lambda: λ2x.t[x]
, 
guard: {T}
Lemmas referenced : 
permutation-split, 
permutation_wf, 
squash_wf, 
true_wf, 
list_wf, 
append_wf, 
filter_wf5, 
l_member_wf, 
iff_imp_equal_bool, 
bnot_wf, 
assert_wf, 
not_wf, 
assert_of_bnot, 
iff_wf, 
all_wf, 
bool_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
lambdaFormation, 
dependent_functionElimination, 
hyp_replacement, 
equalitySymmetry, 
sqequalRule, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
universeEquality, 
because_Cache, 
cumulativity, 
setElimination, 
rename, 
functionExtensionality, 
setEquality, 
independent_isectElimination, 
independent_pairFormation, 
independent_functionElimination, 
voidElimination, 
addLevel, 
productElimination, 
impliesFunctionality, 
imageMemberEquality, 
baseClosed, 
natural_numberEquality, 
functionEquality
Latex:
\mforall{}[A:Type]
    \mforall{}p,q:A  {}\mrightarrow{}  \mBbbB{}.
        ((\mforall{}a:A.  (\muparrow{}q[a]  \mLeftarrow{}{}\mRightarrow{}  \mneg{}\muparrow{}p[a]))
        {}\mRightarrow{}  (\mforall{}L:A  List.  permutation(A;filter(\mlambda{}x.p[x];L)  @  filter(\mlambda{}x.q[x];L);L)))
Date html generated:
2016_10_21-AM-10_24_58
Last ObjectModification:
2016_07_12-AM-05_37_41
Theory : list_1
Home
Index