Nuprl Lemma : select_l_interval

[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕ1]. ∀[x:ℕj].  (l_interval(l;j;i)[x] l[j x] ∈ T)


Proof




Definitions occuring in Statement :  l_interval: l_interval(l;j;i) select: L[n] length: ||as|| list: List int_seg: {i..j-} uall: [x:A]. B[x] subtract: m add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T l_interval: l_interval(l;j;i) squash: T prop: nat: int_seg: {i..j-} guard: {T} lelt: i ≤ j < k and: P ∧ Q all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top less_than: a < b true: True subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q select: L[n]
Lemmas referenced :  equal_wf squash_wf true_wf mklist_select subtract_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf le_wf select_wf itermAdd_wf int_term_value_add_lemma decidable__lt int_seg_wf iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut applyEquality thin lambdaEquality sqequalHypSubstitution imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity hypothesis equalitySymmetry because_Cache dependent_set_memberEquality setElimination rename natural_numberEquality addEquality cumulativity productElimination dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageMemberEquality baseClosed universeEquality independent_functionElimination axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].  \mforall{}[j:\mBbbN{}i  +  1].  \mforall{}[x:\mBbbN{}i  -  j].    (l\_interval(l;j;i)[x]  =  l[j  +  x])



Date html generated: 2017_04_17-AM-07_42_40
Last ObjectModification: 2017_02_27-PM-04_15_14

Theory : list_1


Home Index