Nuprl Lemma : select_l_interval
∀[T:Type]. ∀[l:T List]. ∀[i:ℕ||l||]. ∀[j:ℕi + 1]. ∀[x:ℕi - j].  (l_interval(l;j;i)[x] = l[j + x] ∈ T)
Proof
Definitions occuring in Statement : 
l_interval: l_interval(l;j;i), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
subtract: n - m, 
add: n + m, 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
l_interval: l_interval(l;j;i), 
squash: ↓T, 
prop: ℙ, 
nat: ℕ, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
uimplies: b supposing a, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
less_than: a < b, 
true: True, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
select: L[n]
Lemmas referenced : 
equal_wf, 
squash_wf, 
true_wf, 
mklist_select, 
subtract_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
le_wf, 
select_wf, 
itermAdd_wf, 
int_term_value_add_lemma, 
decidable__lt, 
int_seg_wf, 
iff_weakening_equal
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
applyEquality, 
thin, 
lambdaEquality, 
sqequalHypSubstitution, 
imageElimination, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
hypothesis, 
equalitySymmetry, 
because_Cache, 
dependent_set_memberEquality, 
setElimination, 
rename, 
natural_numberEquality, 
addEquality, 
cumulativity, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[l:T  List].  \mforall{}[i:\mBbbN{}||l||].  \mforall{}[j:\mBbbN{}i  +  1].  \mforall{}[x:\mBbbN{}i  -  j].    (l\_interval(l;j;i)[x]  =  l[j  +  x])
Date html generated:
2017_04_17-AM-07_42_40
Last ObjectModification:
2017_02_27-PM-04_15_14
Theory : list_1
Home
Index