Nuprl Lemma : absval_exp
∀[x:ℤ]. ∀[n:ℕ]. (|x^n| ~ |x|^n)
Proof
Definitions occuring in Statement :
exp: i^n
,
absval: |i|
,
nat: ℕ
,
uall: ∀[x:A]. B[x]
,
int: ℤ
,
sqequal: s ~ t
Definitions unfolded in proof :
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
not: ¬A
,
all: ∀x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
absval: |i|
,
decidable: Dec(P)
,
or: P ∨ Q
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
nat_plus: ℕ+
,
le: A ≤ B
,
subtype_rel: A ⊆r B
,
sq_type: SQType(T)
,
guard: {T}
Lemmas referenced :
nat_wf,
absval_mul,
absval_wf,
exp_step,
le_wf,
exp_wf2,
absval-non-neg,
int_subtype_base,
set_subtype_base,
subtype_base_sq,
int_term_value_subtract_lemma,
int_formula_prop_not_lemma,
itermSubtract_wf,
intformnot_wf,
subtract_wf,
decidable__le,
exp0_lemma,
less_than_wf,
ge_wf,
int_formula_prop_wf,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_and_lemma,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
intformand_wf,
satisfiable-full-omega-tt,
nat_properties
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
isect_memberFormation,
introduction,
cut,
lemma_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
hypothesis,
setElimination,
rename,
intWeakElimination,
lambdaFormation,
natural_numberEquality,
independent_isectElimination,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
independent_functionElimination,
sqequalAxiom,
unionElimination,
instantiate,
because_Cache,
dependent_set_memberEquality,
productElimination,
applyEquality,
equalityTransitivity,
equalitySymmetry
Latex:
\mforall{}[x:\mBbbZ{}]. \mforall{}[n:\mBbbN{}]. (|x\^{}n| \msim{} |x|\^{}n)
Date html generated:
2016_05_14-PM-04_27_57
Last ObjectModification:
2016_01_14-PM-11_34_25
Theory : num_thy_1
Home
Index