Nuprl Lemma : fadd_increasing
∀[n:ℕ]. ∀[f,g:ℕn ⟶ ℤ].  (increasing(fadd(f;g);n)) supposing (nondecreasing(g;n) and increasing(f;n))
Proof
Definitions occuring in Statement : 
fadd: fadd(f;g), 
nondecreasing: nondecreasing(f;k), 
increasing: increasing(f;k), 
int_seg: {i..j-}, 
nat: ℕ, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
function: x:A ⟶ B[x], 
natural_number: $n, 
int: ℤ
Definitions unfolded in proof : 
fadd: fadd(f;g), 
increasing: increasing(f;k), 
nondecreasing: nondecreasing(f;k), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
guard: {T}, 
nat: ℕ, 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
top: Top, 
prop: ℙ, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q), 
subtract: n - m, 
so_lambda: λ2x.t[x], 
so_apply: x[s]
Lemmas referenced : 
nat_wf, 
less_than_wf, 
le_wf, 
all_wf, 
add-member-int_seg2, 
member-less_than, 
int_seg_wf, 
int_term_value_add_lemma, 
int_formula_prop_le_lemma, 
itermAdd_wf, 
intformle_wf, 
decidable__le, 
lelt_wf, 
int_formula_prop_wf, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
subtract_wf, 
int_seg_properties
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
productElimination, 
addEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[f,g:\mBbbN{}n  {}\mrightarrow{}  \mBbbZ{}].
    (increasing(fadd(f;g);n))  supposing  (nondecreasing(g;n)  and  increasing(f;n))
Date html generated:
2016_05_14-PM-09_30_07
Last ObjectModification:
2016_01_14-PM-11_33_33
Theory : num_thy_1
Home
Index