Nuprl Lemma : not-same-parity-implies-even-odd

n,m:ℤ.  ((¬↑same-parity(n;m))  (((↑isEven(n)) ∧ (↑isOdd(m))) ∨ ((↑isOdd(n)) ∧ (↑isEven(m)))))


Proof




Definitions occuring in Statement :  same-parity: same-parity(n;m) isEven: isEven(n) isOdd: isOdd(n) assert: b all: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q int:
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q same-parity: same-parity(n;m) member: t ∈ T uall: [x:A]. B[x] bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a assert: b ifthenelse: if then else fi  bfalse: ff exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb false: False cand: c∧ B true: True not: ¬A
Lemmas referenced :  isEven_wf bool_wf eqtt_to_assert eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot odd-iff-not-even even-iff-not-odd false_wf assert_wf isOdd_wf not_wf same-parity_wf bool_cases assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin hypothesisEquality hypothesis unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination because_Cache voidElimination inrFormation independent_pairFormation productEquality intEquality inlFormation natural_numberEquality

Latex:
\mforall{}n,m:\mBbbZ{}.    ((\mneg{}\muparrow{}same-parity(n;m))  {}\mRightarrow{}  (((\muparrow{}isEven(n))  \mwedge{}  (\muparrow{}isOdd(m)))  \mvee{}  ((\muparrow{}isOdd(n))  \mwedge{}  (\muparrow{}isEven(m)))))



Date html generated: 2017_04_17-AM-09_43_40
Last ObjectModification: 2017_02_27-PM-05_38_16

Theory : num_thy_1


Home Index