Nuprl Lemma : rem-zero-implies-minus

x:ℤ. ∀y:ℤ-o.  (((x rem y) 0 ∈ ℤ ((-x rem y) 0 ∈ ℤ))


Proof




Definitions occuring in Statement :  int_nzero: -o all: x:A. B[x] implies:  Q remainder: rem m minus: -n natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a int_nzero: -o nequal: a ≠ b ∈  decidable: Dec(P) or: P ∨ Q false: False uiff: uiff(P;Q) and: P ∧ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top prop: sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  div_rem_sum subtype_base_sq int_subtype_base int_nzero_properties decidable__equal_int add-is-int-iff multiply-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermMultiply_wf itermAdd_wf itermConstant_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf false_wf minus-one-mul divide_wfa mul-commutes mul-swap rem-exact set_subtype_base nequal_wf int_nzero_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality instantiate cumulativity intEquality independent_isectElimination hypothesis setElimination rename dependent_functionElimination because_Cache unionElimination equalityTransitivity equalitySymmetry pointwiseFunctionality promote_hyp sqequalRule baseApply closedConclusion baseClosed productElimination natural_numberEquality approximateComputation independent_functionElimination Error :dependent_pairFormation_alt,  Error :lambdaEquality_alt,  int_eqEquality Error :isect_memberEquality_alt,  voidElimination independent_pairFormation Error :universeIsType,  multiplyEquality minusEquality Error :equalityIstype,  Error :inhabitedIsType,  applyEquality sqequalBase

Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}y:\mBbbZ{}\msupminus{}\msupzero{}.    (((x  rem  y)  =  0)  {}\mRightarrow{}  ((-x  rem  y)  =  0))



Date html generated: 2019_06_20-PM-02_24_48
Last ObjectModification: 2019_03_06-AM-11_06_26

Theory : num_thy_1


Home Index