Nuprl Lemma : rem-zero-implies-minus
∀x:ℤ. ∀y:ℤ-o.  (((x rem y) = 0 ∈ ℤ) 
⇒ ((-x rem y) = 0 ∈ ℤ))
Proof
Definitions occuring in Statement : 
int_nzero: ℤ-o
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
remainder: n rem m
, 
minus: -n
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
false: False
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
prop: ℙ
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
div_rem_sum, 
subtype_base_sq, 
int_subtype_base, 
int_nzero_properties, 
decidable__equal_int, 
add-is-int-iff, 
multiply-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
itermMultiply_wf, 
itermAdd_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_mul_lemma, 
int_term_value_add_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
false_wf, 
minus-one-mul, 
divide_wfa, 
mul-commutes, 
mul-swap, 
rem-exact, 
set_subtype_base, 
nequal_wf, 
int_nzero_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
Error :lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
instantiate, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
setElimination, 
rename, 
dependent_functionElimination, 
because_Cache, 
unionElimination, 
equalityTransitivity, 
equalitySymmetry, 
pointwiseFunctionality, 
promote_hyp, 
sqequalRule, 
baseApply, 
closedConclusion, 
baseClosed, 
productElimination, 
natural_numberEquality, 
approximateComputation, 
independent_functionElimination, 
Error :dependent_pairFormation_alt, 
Error :lambdaEquality_alt, 
int_eqEquality, 
Error :isect_memberEquality_alt, 
voidElimination, 
independent_pairFormation, 
Error :universeIsType, 
multiplyEquality, 
minusEquality, 
Error :equalityIstype, 
Error :inhabitedIsType, 
applyEquality, 
sqequalBase
Latex:
\mforall{}x:\mBbbZ{}.  \mforall{}y:\mBbbZ{}\msupminus{}\msupzero{}.    (((x  rem  y)  =  0)  {}\mRightarrow{}  ((-x  rem  y)  =  0))
Date html generated:
2019_06_20-PM-02_24_48
Last ObjectModification:
2019_03_06-AM-11_06_26
Theory : num_thy_1
Home
Index