Nuprl Lemma : sum-of-three-cubes-iff-1

This solution to the problem of writing 33 as the sum of three cubes
was found around March 9, 2019 by Andrew Booker using 15 core-years
computation time (over three weeks real time) on super-computer in Bristol.

The smallest number for which it is unknown whether it is the sum of three
cubes is now 42 (and the next is 114).⋅

k:ℕ. ∀a,b,c:ℤ.
  ((0 ≤ (a b))
   ((((a a) (b b)) (c c)) k ∈ ℤ
     ⇐⇒ ∃d:ℕ
          (((a b) d ∈ ℤ)
          ∧ (((d 0 ∈ ℤ) ∧ ((c c) k ∈ ℤ))
            ∨ ((¬(d 0 ∈ ℤ))
              ∧ ((k rem d) 0 ∈ ℤ)
              ∧ (((a a) ((b b) b)) ((k c) ÷ d) ∈ ℤ))))))


Proof




Definitions occuring in Statement :  nat: le: A ≤ B all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q remainder: rem m divide: n ÷ m multiply: m subtract: m add: m natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uiff: uiff(P;Q) cand: c∧ B nequal: a ≠ b ∈  int_nzero: -o iff: ⇐⇒ Q and: P ∧ Q subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q guard: {T} sq_type: SQType(T) prop: top: Top false: False exists: x:A. B[x] satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A or: P ∨ Q decidable: Dec(P) ge: i ≥  nat: uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q all: x:A. B[x]
Lemmas referenced :  decidable__le intformle_wf int_formula_prop_le_lemma div-cancel add-is-int-iff false_wf nequal_wf subtract_wf div_rem_sum itermConstant_wf int_term_value_constant_lemma intformand_wf int_formula_prop_and_lemma set_subtype_base le_wf int_formula_prop_wf int_term_value_subtract_lemma int_term_value_var_lemma int_term_value_mul_lemma int_term_value_add_lemma int_formula_prop_eq_lemma istype-void int_formula_prop_not_lemma itermSubtract_wf itermVar_wf itermMultiply_wf itermAdd_wf intformeq_wf intformnot_wf full-omega-unsat decidable__equal_int nat_properties int_subtype_base subtype_base_sq istype-nat istype-int istype-le
Rules used in proof :  pointwiseFunctionality promote_hyp Error :inrFormation_alt,  Error :dependent_set_memberEquality_alt,  independent_pairFormation Error :inlFormation_alt,  multiplyEquality Error :productIsType,  Error :functionIsType,  Error :equalityIstype,  Error :inhabitedIsType,  baseClosed sqequalBase baseApply closedConclusion applyEquality productElimination Error :unionIsType,  equalitySymmetry equalityTransitivity Error :universeIsType,  sqequalRule voidElimination Error :isect_memberEquality_alt,  int_eqEquality Error :lambdaEquality_alt,  Error :dependent_pairFormation_alt,  independent_functionElimination approximateComputation unionElimination dependent_functionElimination rename setElimination independent_isectElimination intEquality cumulativity instantiate because_Cache hypothesis hypothesisEquality addEquality natural_numberEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut Error :lambdaFormation_alt,  sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}a,b,c:\mBbbZ{}.
    ((0  \mleq{}  (a  +  b))
    {}\mRightarrow{}  ((((a  *  a  *  a)  +  (b  *  b  *  b))  +  (c  *  c  *  c))  =  k
          \mLeftarrow{}{}\mRightarrow{}  \mexists{}d:\mBbbN{}
                    (((a  +  b)  =  d)
                    \mwedge{}  (((d  =  0)  \mwedge{}  ((c  *  c  *  c)  =  k))
                        \mvee{}  ((\mneg{}(d  =  0))
                            \mwedge{}  ((k  -  c  *  c  *  c  rem  d)  =  0)
                            \mwedge{}  (((a  *  a)  +  ((b  *  b)  -  a  *  b))  =  ((k  -  c  *  c  *  c)  \mdiv{}  d)))))))



Date html generated: 2019_06_20-PM-02_42_04
Last ObjectModification: 2019_06_18-PM-10_47_42

Theory : num_thy_1


Home Index