Nuprl Lemma : l_all_eager_product-map
∀T:Type
  ∀A,B:Type. ∀Pa:A ⟶ ℙ. ∀Pb:B ⟶ ℙ. ∀Pt:T ⟶ ℙ. ∀f:A ⟶ B ⟶ T.
    ((∀a:A. ∀b:B.  (Pa[a] 
⇒ Pb[b] 
⇒ Pt[f a b]))
    
⇒ (∀as:A List. ∀bs:B List.  ((∀a∈as.Pa[a]) 
⇒ (∀b∈bs.Pb[b]) 
⇒ (∀t∈eager-product-map(f;as;bs).Pt[t])))) 
  supposing value-type(T)
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
eager-product-map: eager-product-map(f;as;bs)
, 
list: T List
, 
value-type: value-type(T)
, 
uimplies: b supposing a
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
uimplies: b supposing a
, 
member: t ∈ T
, 
value-type: value-type(T)
, 
uall: ∀[x:A]. B[x]
, 
has-value: (a)↓
, 
prop: ℙ
, 
implies: P 
⇒ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
guard: {T}
Lemmas referenced : 
equal-wf-base, 
base_wf, 
list_induction, 
all_wf, 
list_wf, 
l_all_wf, 
l_member_wf, 
eager-product-map_wf, 
value-type_wf, 
eager_product_map_nil_lemma, 
l_all_nil, 
l_all_wf_nil, 
cons_wf, 
eager-product-map-nil, 
subtype_rel_list, 
top_wf, 
l_all_cons, 
eager_product_map_cons_lemma, 
equal_wf, 
eager-map-append-sq, 
l_all_append, 
map_wf, 
reverse_wf, 
l_all_map, 
l_all_reverse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
isect_memberEquality, 
isectElimination, 
thin, 
hypothesisEquality, 
axiomSqleEquality, 
hypothesis, 
extract_by_obid, 
because_Cache, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
lambdaEquality, 
cumulativity, 
functionEquality, 
setElimination, 
applyEquality, 
functionExtensionality, 
setEquality, 
independent_isectElimination, 
independent_functionElimination, 
dependent_functionElimination, 
universeEquality, 
voidElimination, 
voidEquality, 
productElimination, 
independent_pairFormation, 
productEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}T:Type
    \mforall{}A,B:Type.  \mforall{}Pa:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Pb:B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Pt:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T.
        ((\mforall{}a:A.  \mforall{}b:B.    (Pa[a]  {}\mRightarrow{}  Pb[b]  {}\mRightarrow{}  Pt[f  a  b]))
        {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.
                    ((\mforall{}a\mmember{}as.Pa[a])  {}\mRightarrow{}  (\mforall{}b\mmember{}bs.Pb[b])  {}\mRightarrow{}  (\mforall{}t\mmember{}eager-product-map(f;as;bs).Pt[t])))) 
    supposing  value-type(T)
Date html generated:
2017_04_14-AM-08_55_23
Last ObjectModification:
2017_02_27-PM-03_39_33
Theory : omega
Home
Index