Nuprl Lemma : l_all_eager_product-map

T:Type
  ∀A,B:Type. ∀Pa:A ⟶ ℙ. ∀Pb:B ⟶ ℙ. ∀Pt:T ⟶ ℙ. ∀f:A ⟶ B ⟶ T.
    ((∀a:A. ∀b:B.  (Pa[a]  Pb[b]  Pt[f b]))
     (∀as:A List. ∀bs:B List.  ((∀a∈as.Pa[a])  (∀b∈bs.Pb[b])  (∀t∈eager-product-map(f;as;bs).Pt[t])))) 
  supposing value-type(T)


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) eager-product-map: eager-product-map(f;as;bs) list: List value-type: value-type(T) uimplies: supposing a prop: so_apply: x[s] all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T value-type: value-type(T) uall: [x:A]. B[x] has-value: (a)↓ prop: implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] top: Top subtype_rel: A ⊆B iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q cand: c∧ B guard: {T}
Lemmas referenced :  equal-wf-base base_wf list_induction all_wf list_wf l_all_wf l_member_wf eager-product-map_wf value-type_wf eager_product_map_nil_lemma l_all_nil l_all_wf_nil cons_wf eager-product-map-nil subtype_rel_list top_wf l_all_cons eager_product_map_cons_lemma equal_wf eager-map-append-sq l_all_append map_wf reverse_wf l_all_map l_all_reverse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation isect_memberFormation cut introduction sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomSqleEquality hypothesis extract_by_obid because_Cache equalityTransitivity equalitySymmetry rename lambdaEquality cumulativity functionEquality setElimination applyEquality functionExtensionality setEquality independent_isectElimination independent_functionElimination dependent_functionElimination universeEquality voidElimination voidEquality productElimination independent_pairFormation productEquality addLevel impliesFunctionality

Latex:
\mforall{}T:Type
    \mforall{}A,B:Type.  \mforall{}Pa:A  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Pb:B  {}\mrightarrow{}  \mBbbP{}.  \mforall{}Pt:T  {}\mrightarrow{}  \mBbbP{}.  \mforall{}f:A  {}\mrightarrow{}  B  {}\mrightarrow{}  T.
        ((\mforall{}a:A.  \mforall{}b:B.    (Pa[a]  {}\mRightarrow{}  Pb[b]  {}\mRightarrow{}  Pt[f  a  b]))
        {}\mRightarrow{}  (\mforall{}as:A  List.  \mforall{}bs:B  List.
                    ((\mforall{}a\mmember{}as.Pa[a])  {}\mRightarrow{}  (\mforall{}b\mmember{}bs.Pb[b])  {}\mRightarrow{}  (\mforall{}t\mmember{}eager-product-map(f;as;bs).Pt[t])))) 
    supposing  value-type(T)



Date html generated: 2017_04_14-AM-08_55_23
Last ObjectModification: 2017_02_27-PM-03_39_33

Theory : omega


Home Index