Nuprl Lemma : ifthenelse_wf-partial-base

T:Type
  (value-type(T)  (∀c1,c2:partial(T). ∀b:Base.  if then c1 else c2 fi  ∈ partial(T) supposing ¬is-exception(b)))


Proof




Definitions occuring in Statement :  partial: partial(T) value-type: value-type(T) is-exception: is-exception(t) ifthenelse: if then else fi  uimplies: supposing a all: x:A. B[x] not: ¬A implies:  Q member: t ∈ T base: Base universe: Type
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] prop: and: P ∧ Q base-partial: base-partial(T) ifthenelse: if then else fi  not: ¬A false: False squash: T so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] partial: partial(T) subtype_rel: A ⊆B true: True per-partial: per-partial(T;x;y) has-value: (a)↓ uiff: uiff(P;Q) cand: c∧ B
Lemmas referenced :  not_wf is-exception_wf base_wf partial_wf value-type_wf equal-wf-base has-value_wf_base equal_wf has-value_wf-partial termination top_wf has-value-ifthenelse-type partial-not-exception per-partial-equiv_rel per-partial_wf base-partial_wf subtype_quotient quotient-member-eq true_wf squash_wf member_wf and_wf termination-equality-base istype-universe subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity Error :lambdaFormation_alt,  Error :isect_memberFormation_alt,  introduction cut sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry Error :universeIsType,  extract_by_obid isectElimination thin hypothesisEquality Error :inhabitedIsType,  universeEquality because_Cache isectEquality productEquality independent_pairFormation baseClosed closedConclusion baseApply dependent_set_memberEquality lambdaFormation independent_functionElimination dependent_functionElimination unionElimination unionEquality independent_isectElimination voidElimination imageMemberEquality imageElimination decideExceptionCases pointwiseFunctionality rename setElimination lambdaEquality applyEquality natural_numberEquality axiomSqleEquality productElimination applyLambdaEquality hyp_replacement instantiate Error :lambdaEquality_alt,  Error :dependent_set_memberEquality_alt,  Error :productIsType,  Error :equalityIsType3,  Error :equalityIsType1

Latex:
\mforall{}T:Type
    (value-type(T)
    {}\mRightarrow{}  (\mforall{}c1,c2:partial(T).  \mforall{}b:Base.
                if  b  then  c1  else  c2  fi    \mmember{}  partial(T)  supposing  \mneg{}is-exception(b)))



Date html generated: 2019_06_20-PM-00_34_34
Last ObjectModification: 2018_10_06-PM-03_44_00

Theory : partial_1


Home Index