Nuprl Lemma : term-ind_wf
∀[opr:Type]. ∀[P:term(opr) ⟶ ℙ]. ∀[varcase:∀v:{v:varname()| ¬(v = nullvar() ∈ varname())} . P[varterm(v)]].
∀[mktermcase:∀f:opr. ∀bts:bound-term(opr) List.  ((∀i:ℕ||bts||. P[snd(bts[i])]) ⇒ P[mkterm(f;bts)])]. ∀[t:term(opr)].
  (term-ind(x.varcase[x];f,bts,r.mktermcase[f;bts;r];t) ∈ P[t])
Proof
Definitions occuring in Statement : 
term-ind: term-ind, 
bound-term: bound-term(opr), 
mkterm: mkterm(opr;bts), 
varterm: varterm(v), 
term: term(opr), 
nullvar: nullvar(), 
varname: varname(), 
select: L[n], 
length: ||as||, 
list: T List, 
int_seg: {i..j-}, 
uall: ∀[x:A]. B[x], 
prop: ℙ, 
so_apply: x[s1;s2;s3], 
so_apply: x[s], 
pi2: snd(t), 
all: ∀x:A. B[x], 
not: ¬A, 
implies: P ⇒ Q, 
member: t ∈ T, 
set: {x:A| B[x]} , 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
term-ind: term-ind, 
genrec-ap: genrec-ap, 
term-induction1-ext, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
not: ¬A, 
false: False, 
uimplies: b supposing a, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
and: P ∧ Q, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
bound-term: bound-term(opr), 
pi2: snd(t), 
guard: {T}, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
term-induction1-ext, 
term_wf, 
varname_wf, 
nullvar_wf, 
istype-void, 
varterm_wf, 
list_wf, 
bound-term_wf, 
int_seg_wf, 
length_wf, 
select_wf, 
int_seg_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
mkterm_wf, 
all_wf, 
not_wf, 
equal_wf, 
equal-wf-T-base, 
istype-universe
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
sqequalRule, 
lambdaEquality_alt, 
isectElimination, 
hypothesisEquality, 
equalityTransitivity, 
equalitySymmetry, 
hypothesis, 
inhabitedIsType, 
lambdaFormation_alt, 
thin, 
equalityIstype, 
sqequalHypSubstitution, 
dependent_functionElimination, 
independent_functionElimination, 
isectIsType, 
functionIsType, 
universeIsType, 
introduction, 
extract_by_obid, 
universeEquality, 
setIsType, 
because_Cache, 
applyEquality, 
setElimination, 
rename, 
independent_isectElimination, 
voidElimination, 
natural_numberEquality, 
productElimination, 
imageElimination, 
unionElimination, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
functionEquality, 
instantiate, 
functionExtensionality, 
closedConclusion, 
setEquality, 
baseClosed
Latex:
\mforall{}[opr:Type].  \mforall{}[P:term(opr)  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[varcase:\mforall{}v:\{v:varname()|  \mneg{}(v  =  nullvar())\}  .  P[varterm(v)]].
\mforall{}[mktermcase:\mforall{}f:opr.  \mforall{}bts:bound-term(opr)  List.
                              ((\mforall{}i:\mBbbN{}||bts||.  P[snd(bts[i])])  {}\mRightarrow{}  P[mkterm(f;bts)])].  \mforall{}[t:term(opr)].
    (term-ind(x.varcase[x];f,bts,r.mktermcase[f;bts;r];t)  \mmember{}  P[t])
Date html generated:
2020_05_19-PM-09_54_28
Last ObjectModification:
2020_03_09-PM-04_08_36
Theory : terms
Home
Index