Nuprl Lemma : b_all-map2
∀[A,B:Type].
  ∀b:bag(A). ∀f:{a:A| a ↓∈ b}  ⟶ B. ∀P:B ⟶ ℙ.
    ((∀b:B. SqStable(P[b])) 
⇒ (b_all(B;bag-map(f;b);x.P[x]) 
⇐⇒ b_all(A;b;x.P[f x])))
Proof
Definitions occuring in Statement : 
b_all: b_all(T;b;x.P[x])
, 
bag-member: x ↓∈ bs
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
sq_stable: SqStable(P)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
rev_implies: P 
⇐ Q
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
uimplies: b supposing a
, 
uiff: uiff(P;Q)
, 
b_all: b_all(T;b;x.P[x])
, 
sq_stable: SqStable(P)
, 
subtype_rel: A ⊆r B
, 
guard: {T}
Lemmas referenced : 
b_all_wf, 
bag-map_wf, 
bag-member_wf, 
bag-subtype, 
istype-universe, 
sq_stable_wf, 
bag_wf, 
equal_wf, 
bag-member-map2, 
sq_stable__bag-member, 
subtype_rel_self, 
iff_weakening_equal, 
squash_wf, 
exists_wf, 
iff_weakening_uiff, 
b_all-wf2
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
setEquality, 
hypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalRule, 
lambdaEquality_alt, 
applyEquality, 
functionIsType, 
universeEquality, 
setIsType, 
inhabitedIsType, 
baseClosed, 
imageMemberEquality, 
rename, 
setElimination, 
dependent_pairFormation, 
independent_isectElimination, 
productElimination, 
independent_functionElimination, 
dependent_set_memberEquality, 
lambdaFormation, 
imageElimination, 
instantiate, 
dependent_set_memberEquality_alt
Latex:
\mforall{}[A,B:Type].
    \mforall{}b:bag(A).  \mforall{}f:\{a:A|  a  \mdownarrow{}\mmember{}  b\}    {}\mrightarrow{}  B.  \mforall{}P:B  {}\mrightarrow{}  \mBbbP{}.
        ((\mforall{}b:B.  SqStable(P[b]))  {}\mRightarrow{}  (b\_all(B;bag-map(f;b);x.P[x])  \mLeftarrow{}{}\mRightarrow{}  b\_all(A;b;x.P[f  x])))
Date html generated:
2019_10_15-AM-11_02_51
Last ObjectModification:
2018_10_12-AM-09_52_59
Theory : bags
Home
Index