Nuprl Lemma : bag-no-repeats-cons

[T:Type]. ∀[b:bag(T)]. ∀[x:T].  uiff(bag-no-repeats(T;x.b);bag-no-repeats(T;b) ∧ x ↓∈ b))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-no-repeats: bag-no-repeats(T;bs) cons-bag: x.b bag: bag(T) uiff: uiff(P;Q) uall: [x:A]. B[x] not: ¬A and: P ∧ Q universe: Type
Definitions unfolded in proof :  empty-bag: {} cons-bag: x.b bag-append: as bs append: as bs all: x:A. B[x] so_lambda: so_lambda(x,y,z.t[x; y; z]) member: t ∈ T top: Top so_apply: x[s1;s2;s3] uall: [x:A]. B[x] prop: and: P ∧ Q uiff: uiff(P;Q) uimplies: supposing a bag-no-repeats: bag-no-repeats(T;bs) squash: T not: ¬A implies:  Q false: False cand: c∧ B so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_ind_cons_lemma list_ind_nil_lemma bag-member_wf bag-no-repeats_wf cons-bag_wf not_wf bag_wf cons_bag_empty_lemma bag-member-single single-bag_wf all_wf bag-single-no-repeats iff_weakening_uiff bag-append_wf empty-bag_wf bag-no-repeats-append rev_implies_wf uiff_wf and_wf equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity sqequalRule cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis isectElimination cumulativity hypothesisEquality productEquality because_Cache universeEquality isect_memberFormation productElimination independent_pairEquality imageElimination imageMemberEquality baseClosed lambdaEquality equalityTransitivity equalitySymmetry independent_pairFormation independent_functionElimination independent_isectElimination functionEquality lambdaFormation addLevel hyp_replacement dependent_set_memberEquality applyEquality setElimination rename setEquality

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[x:T].    uiff(bag-no-repeats(T;x.b);bag-no-repeats(T;b)  \mwedge{}  (\mneg{}x  \mdownarrow{}\mmember{}  b))



Date html generated: 2016_10_25-AM-10_35_11
Last ObjectModification: 2016_07_12-AM-06_49_55

Theory : bags


Home Index