Nuprl Lemma : l_all-squash-exists-list

[A,B:Type]. ∀[as:A List]. ∀[P:A ⟶ B ⟶ ℙ].
  ↓∃bs:(A × B) List. ((map(λx.(fst(x));bs) as ∈ (A List)) ∧ (∀x∈bs.↓P[fst(x);snd(x)])) supposing (∀x∈as.↓∃y:B. P[x;y])


Proof




Definitions occuring in Statement :  l_all: (∀x∈L.P[x]) map: map(f;as) list: List uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] pi1: fst(t) pi2: snd(t) exists: x:A. B[x] squash: T and: P ∧ Q lambda: λx.A[x] function: x:A ⟶ B[x] product: x:A × B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a so_lambda: λ2x.t[x] implies:  Q prop: all: x:A. B[x] so_apply: x[s1;s2] so_apply: x[s] exists: x:A. B[x] and: P ∧ Q pi1: fst(t) top: Top cand: c∧ B squash: T subtype_rel: A ⊆B iff: ⇐⇒ Q true: True guard: {T} rev_implies:  Q pi2: snd(t)
Lemmas referenced :  list_induction l_all_wf l_member_wf squash_wf exists_wf list_wf equal_wf map_wf length_wf length-map nil_wf map_nil_lemma l_all_nil equal-wf-T-base pi1_wf length_of_nil_lemma pi2_wf l_all_wf_nil l_all_cons cons_wf map_cons_lemma true_wf iff_weakening_equal length_of_cons_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality cumulativity lambdaFormation hypothesis setElimination rename applyEquality functionExtensionality because_Cache setEquality productEquality productElimination applyLambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination dependent_pairFormation dependent_functionElimination independent_pairFormation independent_pairEquality baseClosed imageMemberEquality imageElimination equalityTransitivity equalitySymmetry equalityUniverse levelHypothesis natural_numberEquality universeEquality independent_isectElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[as:A  List].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mdownarrow{}\mexists{}bs:(A  \mtimes{}  B)  List.  ((map(\mlambda{}x.(fst(x));bs)  =  as)  \mwedge{}  (\mforall{}x\mmember{}bs.\mdownarrow{}P[fst(x);snd(x)])) 
    supposing  (\mforall{}x\mmember{}as.\mdownarrow{}\mexists{}y:B.  P[x;y])



Date html generated: 2017_10_01-AM-08_55_26
Last ObjectModification: 2017_07_26-PM-04_37_27

Theory : bags


Home Index