Nuprl Lemma : l_all-squash-exists-list
∀[A,B:Type]. ∀[as:A List]. ∀[P:A ⟶ B ⟶ ℙ].
  ↓∃bs:(A × B) List. ((map(λx.(fst(x));bs) = as ∈ (A List)) ∧ (∀x∈bs.↓P[fst(x);snd(x)])) supposing (∀x∈as.↓∃y:B. P[x;y])
Proof
Definitions occuring in Statement : 
l_all: (∀x∈L.P[x])
, 
map: map(f;as)
, 
list: T List
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s1;s2]
, 
pi1: fst(t)
, 
pi2: snd(t)
, 
exists: ∃x:A. B[x]
, 
squash: ↓T
, 
and: P ∧ Q
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
product: x:A × B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
and: P ∧ Q
, 
pi1: fst(t)
, 
top: Top
, 
cand: A c∧ B
, 
squash: ↓T
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
true: True
, 
guard: {T}
, 
rev_implies: P 
⇐ Q
, 
pi2: snd(t)
Lemmas referenced : 
list_induction, 
l_all_wf, 
l_member_wf, 
squash_wf, 
exists_wf, 
list_wf, 
equal_wf, 
map_wf, 
length_wf, 
length-map, 
nil_wf, 
map_nil_lemma, 
l_all_nil, 
equal-wf-T-base, 
pi1_wf, 
length_of_nil_lemma, 
pi2_wf, 
l_all_wf_nil, 
l_all_cons, 
cons_wf, 
map_cons_lemma, 
true_wf, 
iff_weakening_equal, 
length_of_cons_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
because_Cache, 
setEquality, 
productEquality, 
productElimination, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
dependent_pairFormation, 
dependent_functionElimination, 
independent_pairFormation, 
independent_pairEquality, 
baseClosed, 
imageMemberEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
equalityUniverse, 
levelHypothesis, 
natural_numberEquality, 
universeEquality, 
independent_isectElimination
Latex:
\mforall{}[A,B:Type].  \mforall{}[as:A  List].  \mforall{}[P:A  {}\mrightarrow{}  B  {}\mrightarrow{}  \mBbbP{}].
    \mdownarrow{}\mexists{}bs:(A  \mtimes{}  B)  List.  ((map(\mlambda{}x.(fst(x));bs)  =  as)  \mwedge{}  (\mforall{}x\mmember{}bs.\mdownarrow{}P[fst(x);snd(x)])) 
    supposing  (\mforall{}x\mmember{}as.\mdownarrow{}\mexists{}y:B.  P[x;y])
Date html generated:
2017_10_01-AM-08_55_26
Last ObjectModification:
2017_07_26-PM-04_37_27
Theory : bags
Home
Index