Nuprl Lemma : not-list-member-not-bag-member

[T:Type]. ∀[L:T List]. ∀[x:T].  ((¬(x ∈ L))  x ↓∈ L))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs l_member: (x ∈ l) list: List uall: [x:A]. B[x] not: ¬A implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] implies:  Q prop: subtype_rel: A ⊆B uimplies: supposing a so_apply: x[s] not: ¬A false: False empty-bag: {} uiff: uiff(P;Q) and: P ∧ Q all: x:A. B[x] cons-bag: x.b iff: ⇐⇒ Q rev_implies:  Q or: P ∨ Q sq_or: a ↓∨ b squash: T
Lemmas referenced :  list_induction not_wf l_member_wf bag-member_wf list-subtype-bag list_wf bag-member-empty-iff nil_wf bag-member-cons cons_member or_wf equal_wf not_over_or cons_wf
Rules used in proof :  cut thin lemma_by_obid sqequalHypSubstitution sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isectElimination hypothesisEquality sqequalRule lambdaEquality functionEquality hypothesis applyEquality because_Cache independent_isectElimination independent_functionElimination lambdaFormation productElimination voidElimination cumulativity voidEquality rename addLevel impliesFunctionality dependent_functionElimination levelHypothesis promote_hyp imageElimination unionElimination impliesLevelFunctionality universeEquality isect_memberFormation introduction isect_memberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    ((\mneg{}(x  \mmember{}  L))  {}\mRightarrow{}  (\mneg{}x  \mdownarrow{}\mmember{}  L))



Date html generated: 2016_05_15-PM-02_40_01
Last ObjectModification: 2015_12_27-AM-09_42_17

Theory : bags


Home Index