Nuprl Lemma : not-list-member-not-bag-member
∀[T:Type]. ∀[L:T List]. ∀[x:T].  ((¬(x ∈ L)) 
⇒ (¬x ↓∈ L))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
l_member: (x ∈ l)
, 
list: T List
, 
uall: ∀[x:A]. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_apply: x[s]
, 
not: ¬A
, 
false: False
, 
empty-bag: {}
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
all: ∀x:A. B[x]
, 
cons-bag: x.b
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
or: P ∨ Q
, 
sq_or: a ↓∨ b
, 
squash: ↓T
Lemmas referenced : 
list_induction, 
not_wf, 
l_member_wf, 
bag-member_wf, 
list-subtype-bag, 
list_wf, 
bag-member-empty-iff, 
nil_wf, 
bag-member-cons, 
cons_member, 
or_wf, 
equal_wf, 
not_over_or, 
cons_wf
Rules used in proof : 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
independent_isectElimination, 
independent_functionElimination, 
lambdaFormation, 
productElimination, 
voidElimination, 
cumulativity, 
voidEquality, 
rename, 
addLevel, 
impliesFunctionality, 
dependent_functionElimination, 
levelHypothesis, 
promote_hyp, 
imageElimination, 
unionElimination, 
impliesLevelFunctionality, 
universeEquality, 
isect_memberFormation, 
introduction, 
isect_memberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[x:T].    ((\mneg{}(x  \mmember{}  L))  {}\mRightarrow{}  (\mneg{}x  \mdownarrow{}\mmember{}  L))
Date html generated:
2016_05_15-PM-02_40_01
Last ObjectModification:
2015_12_27-AM-09_42_17
Theory : bags
Home
Index