Nuprl Lemma : bag-count-map
∀[T1,T2:Type]. ∀[f:T1 ⟶ T2]. ∀[eq1:EqDecider(T1)]. ∀[eq2:EqDecider(T2)]. ∀[x:T2]. ∀[bs:bag(T1)]. ∀[g:T2 ⟶ T1].
  (#x in bag-map(f;bs)) ~ (#g x in bs) supposing (∀x:T2. ((f (g x)) = x ∈ T2)) ∧ (∀x:T1. ((g (f x)) = x ∈ T1))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
and: P ∧ Q
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
all: ∀x:A. B[x]
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
sq_type: SQType(T)
, 
prop: ℙ
, 
inject: Inj(A;B;f)
Lemmas referenced : 
bag-count-ap-map, 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bag-count_wf, 
equal_wf, 
iff_weakening_equal, 
all_wf, 
bag_wf, 
deq_wf, 
squash_wf, 
true_wf
Rules used in proof : 
cut, 
introduction, 
extract_by_obid, 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
hypothesis, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
productElimination, 
instantiate, 
cumulativity, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
applyEquality, 
functionExtensionality, 
imageElimination, 
because_Cache, 
dependent_functionElimination, 
equalitySymmetry, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
independent_functionElimination, 
sqequalAxiom, 
productEquality, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
lambdaFormation
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  T2].  \mforall{}[eq1:EqDecider(T1)].  \mforall{}[eq2:EqDecider(T2)].  \mforall{}[x:T2].  \mforall{}[bs:bag(T1)].
\mforall{}[g:T2  {}\mrightarrow{}  T1].
    (\#x  in  bag-map(f;bs))  \msim{}  (\#g  x  in  bs)  supposing  (\mforall{}x:T2.  ((f  (g  x))  =  x))  \mwedge{}  (\mforall{}x:T1.  ((g  (f  x))  =  x))
Date html generated:
2018_05_21-PM-09_46_05
Last ObjectModification:
2017_07_26-PM-06_29_56
Theory : bags_2
Home
Index