Nuprl Lemma : bag-count-map

[T1,T2:Type]. ∀[f:T1 ⟶ T2]. ∀[eq1:EqDecider(T1)]. ∀[eq2:EqDecider(T2)]. ∀[x:T2]. ∀[bs:bag(T1)]. ∀[g:T2 ⟶ T1].
  (#x in bag-map(f;bs)) (#g in bs) supposing (∀x:T2. ((f (g x)) x ∈ T2)) ∧ (∀x:T1. ((g (f x)) x ∈ T1))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-map: bag-map(f;bs) bag: bag(T) deq: EqDecider(T) uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type sqequal: t equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q nat: so_lambda: λ2x.t[x] so_apply: x[s] squash: T all: x:A. B[x] subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q true: True sq_type: SQType(T) prop: inject: Inj(A;B;f)
Lemmas referenced :  bag-count-ap-map subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base bag-count_wf equal_wf iff_weakening_equal all_wf bag_wf deq_wf squash_wf true_wf
Rules used in proof :  cut introduction extract_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality productElimination instantiate cumulativity independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality applyEquality functionExtensionality imageElimination because_Cache dependent_functionElimination equalitySymmetry imageMemberEquality baseClosed equalityTransitivity independent_functionElimination sqequalAxiom productEquality isect_memberEquality functionEquality universeEquality lambdaFormation

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  T2].  \mforall{}[eq1:EqDecider(T1)].  \mforall{}[eq2:EqDecider(T2)].  \mforall{}[x:T2].  \mforall{}[bs:bag(T1)].
\mforall{}[g:T2  {}\mrightarrow{}  T1].
    (\#x  in  bag-map(f;bs))  \msim{}  (\#g  x  in  bs)  supposing  (\mforall{}x:T2.  ((f  (g  x))  =  x))  \mwedge{}  (\mforall{}x:T1.  ((g  (f  x))  =  x))



Date html generated: 2018_05_21-PM-09_46_05
Last ObjectModification: 2017_07_26-PM-06_29_56

Theory : bags_2


Home Index