Nuprl Lemma : bag-count-ap-map

[T1,T2:Type]. ∀[f:T1 ⟶ T2]. ∀[eq1:EqDecider(T1)]. ∀[eq2:EqDecider(T2)]. ∀[x:T1]. ∀[bs:bag(T1)].
  (#f in bag-map(f;bs)) (#x in bs) supposing Inj(T1;T2;f)


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-map: bag-map(f;bs) bag: bag(T) deq: EqDecider(T) inject: Inj(A;B;f) uimplies: supposing a uall: [x:A]. B[x] apply: a function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) all: x:A. B[x] implies:  Q guard: {T} prop: top: Top squash: T deq: EqDecider(T) iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q uiff: uiff(P;Q) eqof: eqof(d) true: True inject: Inj(A;B;f)
Lemmas referenced :  subtype_base_sq nat_wf set_subtype_base le_wf int_subtype_base bag-count-sqequal bag-map_wf inject_wf bag_wf deq_wf bag-size_wf set_wf assert_wf bag-filter_wf iff_imp_equal_bool equal_wf and_wf safe-assert-deq eqof_wf iff_wf bag-filter-map bag-size-map
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination sqequalRule intEquality lambdaEquality natural_numberEquality hypothesisEquality functionExtensionality applyEquality because_Cache dependent_functionElimination equalityTransitivity equalitySymmetry independent_functionElimination sqequalAxiom isect_memberEquality functionEquality universeEquality voidElimination voidEquality imageElimination setElimination rename independent_pairFormation lambdaFormation dependent_set_memberEquality applyLambdaEquality productElimination addLevel impliesFunctionality levelHypothesis andLevelFunctionality impliesLevelFunctionality imageMemberEquality baseClosed

Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  T2].  \mforall{}[eq1:EqDecider(T1)].  \mforall{}[eq2:EqDecider(T2)].  \mforall{}[x:T1].  \mforall{}[bs:bag(T1)].
    (\#f  x  in  bag-map(f;bs))  \msim{}  (\#x  in  bs)  supposing  Inj(T1;T2;f)



Date html generated: 2018_05_21-PM-09_46_02
Last ObjectModification: 2017_07_26-PM-06_29_55

Theory : bags_2


Home Index