Nuprl Lemma : bag-count-ap-map
∀[T1,T2:Type]. ∀[f:T1 ⟶ T2]. ∀[eq1:EqDecider(T1)]. ∀[eq2:EqDecider(T2)]. ∀[x:T1]. ∀[bs:bag(T1)].
  (#f x in bag-map(f;bs)) ~ (#x in bs) supposing Inj(T1;T2;f)
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs)
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
deq: EqDecider(T)
, 
inject: Inj(A;B;f)
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
guard: {T}
, 
prop: ℙ
, 
top: Top
, 
squash: ↓T
, 
deq: EqDecider(T)
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
uiff: uiff(P;Q)
, 
eqof: eqof(d)
, 
true: True
, 
inject: Inj(A;B;f)
Lemmas referenced : 
subtype_base_sq, 
nat_wf, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
bag-count-sqequal, 
bag-map_wf, 
inject_wf, 
bag_wf, 
deq_wf, 
bag-size_wf, 
set_wf, 
assert_wf, 
bag-filter_wf, 
iff_imp_equal_bool, 
equal_wf, 
and_wf, 
safe-assert-deq, 
eqof_wf, 
iff_wf, 
bag-filter-map, 
bag-size-map
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
sqequalRule, 
intEquality, 
lambdaEquality, 
natural_numberEquality, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
because_Cache, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
sqequalAxiom, 
isect_memberEquality, 
functionEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
setElimination, 
rename, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
productElimination, 
addLevel, 
impliesFunctionality, 
levelHypothesis, 
andLevelFunctionality, 
impliesLevelFunctionality, 
imageMemberEquality, 
baseClosed
Latex:
\mforall{}[T1,T2:Type].  \mforall{}[f:T1  {}\mrightarrow{}  T2].  \mforall{}[eq1:EqDecider(T1)].  \mforall{}[eq2:EqDecider(T2)].  \mforall{}[x:T1].  \mforall{}[bs:bag(T1)].
    (\#f  x  in  bag-map(f;bs))  \msim{}  (\#x  in  bs)  supposing  Inj(T1;T2;f)
Date html generated:
2018_05_21-PM-09_46_02
Last ObjectModification:
2017_07_26-PM-06_29_55
Theory : bags_2
Home
Index