Nuprl Lemma : bag-moebius-no-repeats
∀[T:Type]. ∀[eq:EqDecider(T)]. ∀[b:bag(T)].
  bag-moebius(eq;b) ~ if (#(b) rem 2 =z 0) then 1 else -1 fi  supposing ↑bag-has-no-repeats(eq;b)
Proof
Definitions occuring in Statement : 
bag-moebius: bag-moebius(eq;b), 
bag-has-no-repeats: bag-has-no-repeats(eq;b), 
bag-size: #(bs), 
bag: bag(T), 
deq: EqDecider(T), 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
eq_int: (i =z j), 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
remainder: n rem m, 
minus: -n, 
natural_number: $n, 
universe: Type, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
bag-moebius: bag-moebius(eq;b), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
true: True, 
nequal: a ≠ b ∈ T , 
not: ¬A, 
sq_type: SQType(T), 
guard: {T}, 
false: False, 
prop: ℙ, 
bfalse: ff, 
exists: ∃x:A. B[x], 
or: P ∨ Q, 
bnot: ¬bb, 
assert: ↑b
Lemmas referenced : 
subtype_base_sq, 
int_subtype_base, 
bag-has-no-repeats_wf, 
bool_wf, 
eqtt_to_assert, 
eq_int_wf, 
equal-wf-base, 
true_wf, 
assert_of_eq_int, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
assert_wf, 
bag_wf, 
deq_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
intEquality, 
independent_isectElimination, 
hypothesis, 
hypothesisEquality, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
sqequalRule, 
remainderEquality, 
because_Cache, 
natural_numberEquality, 
addLevel, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
baseClosed, 
dependent_pairFormation, 
promote_hyp, 
minusEquality, 
sqequalAxiom, 
isect_memberEquality, 
universeEquality
Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[b:bag(T)].
    bag-moebius(eq;b)  \msim{}  if  (\#(b)  rem  2  =\msubz{}  0)  then  1  else  -1  fi    supposing  \muparrow{}bag-has-no-repeats(eq;b)
Date html generated:
2018_05_21-PM-09_53_42
Last ObjectModification:
2017_07_26-PM-06_32_24
Theory : bags_2
Home
Index