Nuprl Lemma : bag-remove-repeats-eq-remove-repeats

[T:Type]. ∀[eq:EqDecider(T)]. ∀[bs:bag(T)].  (bag-remove-repeats(eq;bs) remove-repeats(eq;bs) ∈ bag(T))


Proof




Definitions occuring in Statement :  bag-remove-repeats: bag-remove-repeats(eq;bs) bag: bag(T) remove-repeats: remove-repeats(eq;L) deq: EqDecider(T) uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T bag: bag(T) quotient: x,y:A//B[x; y] and: P ∧ Q all: x:A. B[x] implies:  Q bag-remove-repeats: bag-remove-repeats(eq;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q prop:
Lemmas referenced :  quotient-member-eq list_wf permutation_wf permutation-equiv list-to-set_wf remove-repeats_wf permutation_functionality_wrt_permutation permutation_weakening remove-repeats_functionality_wrt_permutation permutation_inversion list-to-set-is-remove-repeats bag_wf deq_wf istype-universe
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut sqequalHypSubstitution pointwiseFunctionalityForEquality because_Cache hypothesis sqequalRule pertypeElimination promote_hyp thin productElimination equalityTransitivity equalitySymmetry inhabitedIsType lambdaFormation_alt rename extract_by_obid isectElimination hypothesisEquality lambdaEquality_alt independent_isectElimination dependent_functionElimination independent_functionElimination universeIsType equalityIstype productIsType sqequalBase isect_memberEquality_alt axiomEquality isectIsTypeImplies instantiate universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[eq:EqDecider(T)].  \mforall{}[bs:bag(T)].    (bag-remove-repeats(eq;bs)  =  remove-repeats(eq;bs))



Date html generated: 2020_05_20-AM-09_04_15
Last ObjectModification: 2020_01_04-PM-10_17_54

Theory : bags_2


Home Index