Nuprl Lemma : list-to-set-is-remove-repeats

[T:Type]. ∀eq:EqDecider(T). ∀L:T List.  permutation(T;list-to-set(eq;L);remove-repeats(eq;L))


Proof




Definitions occuring in Statement :  remove-repeats: remove-repeats(eq;L) list-to-set: list-to-set(eq;L) permutation: permutation(T;L1;L2) list: List deq: EqDecider(T) uall: [x:A]. B[x] all: x:A. B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] member: t ∈ T deq: EqDecider(T) implies:  Q iff: ⇐⇒ Q and: P ∧ Q eqof: eqof(d) uiff: uiff(P;Q) uimplies: supposing a prop: rev_implies:  Q rev_uimplies: rev_uimplies(P;Q) subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] decidable: Dec(P) or: P ∨ Q not: ¬A false: False ge: i ≥  le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] top: Top
Lemmas referenced :  permutation-iff-count1 safe-assert-deq assert_wf equal_wf assert_witness list-to-set_wf remove-repeats_wf list-to-set-property no-repeats-iff-count remove-repeats-no_repeats list_wf deq_wf decidable__le length_wf filter_wf5 subtype_rel_dep_function l_member_wf bool_wf set_wf subtype_rel_self remove-repeats_property l_member-iff-length-filter equal-wf-T-base non_neg_length decidable__equal_int satisfiable-full-omega-tt intformand_wf intformnot_wf intformeq_wf itermVar_wf intformle_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality dependent_functionElimination setElimination rename hypothesis independent_functionElimination independent_pairFormation sqequalRule because_Cache productElimination independent_isectElimination applyEquality cumulativity independent_pairEquality lambdaEquality axiomEquality universeEquality natural_numberEquality setEquality unionElimination equalityTransitivity equalitySymmetry promote_hyp voidElimination instantiate baseClosed dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}eq:EqDecider(T).  \mforall{}L:T  List.    permutation(T;list-to-set(eq;L);remove-repeats(eq;L))



Date html generated: 2017_04_17-AM-09_11_30
Last ObjectModification: 2017_02_27-PM-05_19_29

Theory : decidable!equality


Home Index