Nuprl Lemma : equal-nat-inf-infinity2
∀[x:ℕ∞]. uiff(x = ∞ ∈ ℕ∞;∀i:ℕ. (↑(x i)))
Proof
Definitions occuring in Statement : 
nat-inf-infinity: ∞, 
nat-inf: ℕ∞, 
nat: ℕ, 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
apply: f a, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
nat-inf-infinity: ∞, 
btrue: tt, 
true: True, 
prop: ℙ, 
nat-inf: ℕ∞, 
implies: P ⇒ Q, 
nat: ℕ, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
top: Top, 
subtype_rel: A ⊆r B, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
guard: {T}
Lemmas referenced : 
assert_wf, 
nat_wf, 
assert_witness, 
equal-wf-T-base, 
nat-inf_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
iff_imp_equal_bool, 
nat-inf-infinity_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
hypothesis, 
thin, 
natural_numberEquality, 
hyp_replacement, 
equalitySymmetry, 
Error :applyLambdaEquality, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
applyEquality, 
setElimination, 
rename, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
dependent_functionElimination, 
independent_functionElimination, 
because_Cache, 
baseClosed, 
dependent_set_memberEquality, 
addEquality, 
unionElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
functionExtensionality, 
functionEquality, 
productElimination, 
independent_pairEquality, 
equalityTransitivity, 
axiomEquality
Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  uiff(x  =  \minfty{};\mforall{}i:\mBbbN{}.  (\muparrow{}(x  i)))
Date html generated:
2016_10_25-AM-10_14_14
Last ObjectModification:
2016_07_12-AM-06_25_05
Theory : basic
Home
Index