Nuprl Lemma : equal-nat-inf-infinity2

[x:ℕ∞]. uiff(x = ∞ ∈ ℕ∞;∀i:ℕ(↑(x i)))


Proof




Definitions occuring in Statement :  nat-inf-infinity: nat-inf: ℕ∞ nat: assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] all: x:A. B[x] apply: a equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a all: x:A. B[x] assert: b ifthenelse: if then else fi  nat-inf-infinity: btrue: tt true: True prop: nat-inf: ℕ∞ implies:  Q nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] guard: {T}
Lemmas referenced :  assert_wf nat_wf assert_witness equal-wf-T-base nat-inf_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf iff_imp_equal_bool nat-inf-infinity_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation hypothesis thin natural_numberEquality hyp_replacement equalitySymmetry Error :applyLambdaEquality,  extract_by_obid sqequalHypSubstitution isectElimination applyEquality setElimination rename hypothesisEquality sqequalRule lambdaEquality dependent_functionElimination independent_functionElimination because_Cache baseClosed dependent_set_memberEquality addEquality unionElimination independent_isectElimination dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll functionExtensionality functionEquality productElimination independent_pairEquality equalityTransitivity axiomEquality

Latex:
\mforall{}[x:\mBbbN{}\minfty{}].  uiff(x  =  \minfty{};\mforall{}i:\mBbbN{}.  (\muparrow{}(x  i)))



Date html generated: 2016_10_25-AM-10_14_14
Last ObjectModification: 2016_07_12-AM-06_25_05

Theory : basic


Home Index