Nuprl Lemma : adjacent-nil
∀[T:Type]. ∀[x,y:T]. False supposing adjacent(T;[];x;y)
Proof
Definitions occuring in Statement :
adjacent: adjacent(T;L;x;y)
,
nil: []
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
false: False
,
universe: Type
Definitions unfolded in proof :
adjacent: adjacent(T;L;x;y)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
false: False
,
select: L[n]
,
all: ∀x:A. B[x]
,
nil: []
,
it: ⋅
,
so_lambda: λ2x y.t[x; y]
,
top: Top
,
so_apply: x[s1;s2]
,
subtract: n - m
,
exists: ∃x:A. B[x]
,
and: P ∧ Q
,
guard: {T}
,
int_seg: {i..j-}
,
lelt: i ≤ j < k
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
implies: P
⇒ Q
,
not: ¬A
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
so_apply: x[s]
Lemmas referenced :
length_of_nil_lemma,
stuck-spread,
base_wf,
int_seg_properties,
satisfiable-full-omega-tt,
intformand_wf,
intformless_wf,
itermVar_wf,
itermConstant_wf,
intformle_wf,
int_formula_prop_and_lemma,
int_formula_prop_less_lemma,
int_term_value_var_lemma,
int_term_value_constant_lemma,
int_formula_prop_le_lemma,
int_formula_prop_wf,
exists_wf,
int_seg_wf,
subtract_wf,
length_wf,
nil_wf,
equal_wf,
select_wf,
decidable__le,
intformnot_wf,
int_formula_prop_not_lemma,
decidable__lt,
itermSubtract_wf,
int_term_value_subtract_lemma,
itermAdd_wf,
int_term_value_add_lemma
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
sqequalHypSubstitution,
extract_by_obid,
hypothesis,
isectElimination,
thin,
baseClosed,
independent_isectElimination,
lambdaFormation,
isect_memberEquality,
voidElimination,
voidEquality,
productElimination,
natural_numberEquality,
minusEquality,
hypothesisEquality,
setElimination,
rename,
dependent_pairFormation,
lambdaEquality,
int_eqEquality,
intEquality,
dependent_functionElimination,
independent_pairFormation,
computeAll,
because_Cache,
productEquality,
cumulativity,
unionElimination,
addEquality,
equalityTransitivity,
equalitySymmetry,
universeEquality
Latex:
\mforall{}[T:Type]. \mforall{}[x,y:T]. False supposing adjacent(T;[];x;y)
Date html generated:
2018_05_21-PM-06_32_17
Last ObjectModification:
2017_07_26-PM-04_51_39
Theory : general
Home
Index