Nuprl Lemma : can-apply-p-restrict
∀[A,B:Type].
  ∀f:A ⟶ (B + Top)
    ∀[P:A ⟶ ℙ]. ∀p:∀x:A. Dec(P[x]). ∀x:A.  (↑can-apply(p-restrict(f;p);x) 
⇐⇒ (↑can-apply(f;x)) ∧ P[x])
Proof
Definitions occuring in Statement : 
p-restrict: p-restrict(f;p)
, 
can-apply: can-apply(f;x)
, 
assert: ↑b
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
top: Top
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
function: x:A ⟶ B[x]
, 
union: left + right
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
p-restrict: p-restrict(f;p)
, 
member: t ∈ T
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
top: Top
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
can-apply-compose-iff, 
iff_wf, 
p-compose_wf, 
and_wf, 
assert_wf, 
can-apply-p-filter, 
assert_witness, 
do-apply-p-filter, 
true_wf, 
squash_wf, 
p-filter_wf, 
do-apply_wf, 
subtype_rel_union, 
subtype_rel_dep_function, 
can-apply_wf, 
assert_functionality_wrt_uiff, 
top_wf, 
decidable_wf, 
all_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
hypothesisEquality, 
cut, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
hypothesis, 
functionEquality, 
cumulativity, 
universeEquality, 
unionEquality, 
independent_pairFormation, 
introduction, 
productElimination, 
because_Cache, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination, 
dependent_functionElimination, 
productEquality, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[A,B:Type].
    \mforall{}f:A  {}\mrightarrow{}  (B  +  Top)
        \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}]
            \mforall{}p:\mforall{}x:A.  Dec(P[x]).  \mforall{}x:A.    (\muparrow{}can-apply(p-restrict(f;p);x)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}can-apply(f;x))  \mwedge{}  P[x])
Date html generated:
2016_05_15-PM-03_31_25
Last ObjectModification:
2016_01_16-AM-10_48_59
Theory : general
Home
Index