Nuprl Lemma : can-apply-p-restrict

[A,B:Type].
  ∀f:A ⟶ (B Top)
    ∀[P:A ⟶ ℙ]. ∀p:∀x:A. Dec(P[x]). ∀x:A.  (↑can-apply(p-restrict(f;p);x) ⇐⇒ (↑can-apply(f;x)) ∧ P[x])


Proof




Definitions occuring in Statement :  p-restrict: p-restrict(f;p) can-apply: can-apply(f;x) assert: b decidable: Dec(P) uall: [x:A]. B[x] top: Top prop: so_apply: x[s] all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] p-restrict: p-restrict(f;p) member: t ∈ T prop: so_lambda: λ2x.t[x] so_apply: x[s] iff: ⇐⇒ Q and: P ∧ Q implies:  Q subtype_rel: A ⊆B uimplies: supposing a top: Top squash: T true: True guard: {T} uiff: uiff(P;Q) rev_implies:  Q rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  can-apply-compose-iff iff_wf p-compose_wf and_wf assert_wf can-apply-p-filter assert_witness do-apply-p-filter true_wf squash_wf p-filter_wf do-apply_wf subtype_rel_union subtype_rel_dep_function can-apply_wf assert_functionality_wrt_uiff top_wf decidable_wf all_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation hypothesisEquality cut lemma_by_obid sqequalHypSubstitution isectElimination thin sqequalRule lambdaEquality applyEquality hypothesis functionEquality cumulativity universeEquality unionEquality independent_pairFormation introduction productElimination because_Cache independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_functionElimination productEquality addLevel impliesFunctionality

Latex:
\mforall{}[A,B:Type].
    \mforall{}f:A  {}\mrightarrow{}  (B  +  Top)
        \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}]
            \mforall{}p:\mforall{}x:A.  Dec(P[x]).  \mforall{}x:A.    (\muparrow{}can-apply(p-restrict(f;p);x)  \mLeftarrow{}{}\mRightarrow{}  (\muparrow{}can-apply(f;x))  \mwedge{}  P[x])



Date html generated: 2016_05_15-PM-03_31_25
Last ObjectModification: 2016_01_16-AM-10_48_59

Theory : general


Home Index