Nuprl Lemma : can-apply-compose-iff

[A,B,C:Type]. ∀[g:A ⟶ (B Top)]. ∀[f:B ⟶ (C Top)]. ∀[x:A].
  uiff(↑can-apply(f g;x);(↑can-apply(g;x)) ∧ (↑can-apply(f;do-apply(g;x))))


Proof




Definitions occuring in Statement :  p-compose: g do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] top: Top and: P ∧ Q function: x:A ⟶ B[x] union: left right universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a guard: {T} subtype_rel: A ⊆B top: Top implies:  Q prop: can-apply: can-apply(f;x) p-compose: g not: ¬A false: False all: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff
Lemmas referenced :  can-apply-compose assert_witness can-apply_wf subtype_rel_union top_wf do-apply_wf assert_wf p-compose_wf isl_wf bool_wf equal-wf-T-base bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot equal_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation extract_by_obid sqequalHypSubstitution isectElimination thin because_Cache hypothesisEquality independent_isectElimination hypothesis productElimination sqequalRule independent_pairEquality cumulativity functionExtensionality applyEquality lambdaEquality isect_memberEquality voidElimination voidEquality independent_functionElimination productEquality equalityTransitivity equalitySymmetry functionEquality unionEquality universeEquality baseClosed lambdaFormation unionElimination equalityElimination dependent_functionElimination

Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[x:A].
    uiff(\muparrow{}can-apply(f  o  g;x);(\muparrow{}can-apply(g;x))  \mwedge{}  (\muparrow{}can-apply(f;do-apply(g;x))))



Date html generated: 2017_10_01-AM-09_13_39
Last ObjectModification: 2017_07_26-PM-04_48_59

Theory : general


Home Index