Nuprl Lemma : can-apply-compose-iff
∀[A,B,C:Type]. ∀[g:A ⟶ (B + Top)]. ∀[f:B ⟶ (C + Top)]. ∀[x:A].
  uiff(↑can-apply(f o g;x);(↑can-apply(g;x)) ∧ (↑can-apply(f;do-apply(g;x))))
Proof
Definitions occuring in Statement : 
p-compose: f o g, 
do-apply: do-apply(f;x), 
can-apply: can-apply(f;x), 
assert: ↑b, 
uiff: uiff(P;Q), 
uall: ∀[x:A]. B[x], 
top: Top, 
and: P ∧ Q, 
function: x:A ⟶ B[x], 
union: left + right, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
uimplies: b supposing a, 
guard: {T}, 
subtype_rel: A ⊆r B, 
top: Top, 
implies: P ⇒ Q, 
prop: ℙ, 
can-apply: can-apply(f;x), 
p-compose: f o g, 
not: ¬A, 
false: False, 
all: ∀x:A. B[x], 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff
Lemmas referenced : 
can-apply-compose, 
assert_witness, 
can-apply_wf, 
subtype_rel_union, 
top_wf, 
do-apply_wf, 
assert_wf, 
p-compose_wf, 
isl_wf, 
bool_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
equal_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
because_Cache, 
hypothesisEquality, 
independent_isectElimination, 
hypothesis, 
productElimination, 
sqequalRule, 
independent_pairEquality, 
cumulativity, 
functionExtensionality, 
applyEquality, 
lambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
independent_functionElimination, 
productEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
unionEquality, 
universeEquality, 
baseClosed, 
lambdaFormation, 
unionElimination, 
equalityElimination, 
dependent_functionElimination
Latex:
\mforall{}[A,B,C:Type].  \mforall{}[g:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[f:B  {}\mrightarrow{}  (C  +  Top)].  \mforall{}[x:A].
    uiff(\muparrow{}can-apply(f  o  g;x);(\muparrow{}can-apply(g;x))  \mwedge{}  (\muparrow{}can-apply(f;do-apply(g;x))))
Date html generated:
2017_10_01-AM-09_13_39
Last ObjectModification:
2017_07_26-PM-04_48_59
Theory : general
Home
Index