Nuprl Lemma : compat-common-member

[T:Type]. ∀[L1,L2:T List].  ∀[k:ℕ]. (L1[k] L2[k] ∈ T) supposing (k < ||L2|| and k < ||L1||) supposing L1 || L2


Proof




Definitions occuring in Statement :  compat: l1 || l2 select: L[n] length: ||as|| list: List nat: less_than: a < b uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a compat: l1 || l2 or: P ∨ Q iseg: l1 ≤ l2 exists: x:A. B[x] prop: squash: T nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) false: False implies:  Q not: ¬A top: Top and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B true: True subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  length_wf_nat equal_wf nat_wf squash_wf true_wf select_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf select_append_front lelt_wf length_wf iff_weakening_equal and_wf less_than_wf compat_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution unionElimination thin productElimination dependent_set_memberEquality hypothesis extract_by_obid isectElimination cumulativity hypothesisEquality applyEquality lambdaEquality imageElimination equalityTransitivity equalitySymmetry because_Cache setElimination rename independent_isectElimination dependent_functionElimination natural_numberEquality dependent_pairFormation int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll imageMemberEquality baseClosed universeEquality independent_functionElimination hyp_replacement applyLambdaEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    \mforall{}[k:\mBbbN{}].  (L1[k]  =  L2[k])  supposing  (k  <  ||L2||  and  k  <  ||L1||)  supposing\000C  L1  ||  L2



Date html generated: 2018_05_21-PM-06_44_47
Last ObjectModification: 2017_07_26-PM-04_55_16

Theory : general


Home Index