Nuprl Lemma : compat-common-member
∀[T:Type]. ∀[L1,L2:T List].  ∀[k:ℕ]. (L1[k] = L2[k] ∈ T) supposing (k < ||L2|| and k < ||L1||) supposing L1 || L2
Proof
Definitions occuring in Statement : 
compat: l1 || l2
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
nat: ℕ
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
compat: l1 || l2
, 
or: P ∨ Q
, 
iseg: l1 ≤ l2
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
squash: ↓T
, 
nat: ℕ
, 
ge: i ≥ j 
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
true: True
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
length_wf_nat, 
equal_wf, 
nat_wf, 
squash_wf, 
true_wf, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
select_append_front, 
lelt_wf, 
length_wf, 
iff_weakening_equal, 
and_wf, 
less_than_wf, 
compat_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
unionElimination, 
thin, 
productElimination, 
dependent_set_memberEquality, 
hypothesis, 
extract_by_obid, 
isectElimination, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
lambdaEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
because_Cache, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_functionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_functionElimination, 
hyp_replacement, 
applyLambdaEquality, 
axiomEquality
Latex:
\mforall{}[T:Type].  \mforall{}[L1,L2:T  List].    \mforall{}[k:\mBbbN{}].  (L1[k]  =  L2[k])  supposing  (k  <  ||L2||  and  k  <  ||L1||)  supposing\000C  L1  ||  L2
Date html generated:
2018_05_21-PM-06_44_47
Last ObjectModification:
2017_07_26-PM-04_55_16
Theory : general
Home
Index