Nuprl Lemma : compose-rotate-by

[n,i,j:ℕ].  ((rotate-by(n;i) rotate-by(n;j)) rotate-by(n;i j) ∈ (ℕn ⟶ ℕn))


Proof




Definitions occuring in Statement :  rotate-by: rotate-by(n;i) compose: g int_seg: {i..j-} nat: uall: [x:A]. B[x] function: x:A ⟶ B[x] add: m natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: true: True ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: squash: T subtype_rel: A ⊆B guard: {T} iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_wf int_seg_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf equal_wf compose_wf fun_exp_wf rotate_wf fun_exp_add iff_weakening_equal squash_wf true_wf iterate-rotate-rotate-by
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut hypothesis extract_by_obid sqequalRule sqequalHypSubstitution isect_memberEquality isectElimination thin hypothesisEquality axiomEquality because_Cache functionEquality natural_numberEquality setElimination rename dependent_set_memberEquality addEquality dependent_functionElimination unionElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality voidElimination voidEquality independent_pairFormation computeAll applyEquality imageElimination imageMemberEquality baseClosed equalityTransitivity equalitySymmetry productElimination independent_functionElimination universeEquality cumulativity

Latex:
\mforall{}[n,i,j:\mBbbN{}].    ((rotate-by(n;i)  o  rotate-by(n;j))  =  rotate-by(n;i  +  j))



Date html generated: 2018_05_21-PM-08_18_35
Last ObjectModification: 2017_07_26-PM-05_52_04

Theory : general


Home Index