Nuprl Lemma : connection-bound

[T:Type]
  ((∀x,y:T.  Dec(x y ∈ T))
   (∀k:ℕ(|T| ≤  (∀f:T ⟶ T. ∀a,b:T.  (∃n:ℕ(b (f^n a) ∈ T) ⇐⇒ ∃n:ℕk. (b (f^n a) ∈ T))))))


Proof




Definitions occuring in Statement :  cardinality-le: |T| ≤ n fun_exp: f^n int_seg: {i..j-} nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] rev_implies:  Q exists: x:A. B[x] subtype_rel: A ⊆B nat: uimplies: supposing a le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A finite-type: finite-type(T) cardinality-le: |T| ≤ n l_member: (x ∈ l) cand: c∧ B int_seg: {i..j-} lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top
Lemmas referenced :  cardinality-le-no_repeats-length int_formula_prop_wf int_formula_prop_le_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformle_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties length_wf lelt_wf decidable_wf all_wf cardinality-le_wf false_wf int_seg_subtype_nat int_seg_wf fun_exp_wf equal_wf nat_wf exists_wf orbit-exists
Rules used in proof :  cut lemma_by_obid sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation hypothesis sqequalHypSubstitution isectElimination thin hypothesisEquality lambdaFormation independent_functionElimination independent_pairFormation sqequalRule lambdaEquality applyEquality productElimination dependent_pairFormation because_Cache natural_numberEquality setElimination rename cumulativity independent_isectElimination functionEquality universeEquality dependent_functionElimination dependent_set_memberEquality equalityTransitivity unionElimination int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll

Latex:
\mforall{}[T:Type]
    ((\mforall{}x,y:T.    Dec(x  =  y))
    {}\mRightarrow{}  (\mforall{}k:\mBbbN{}.  (|T|  \mleq{}  k  {}\mRightarrow{}  (\mforall{}f:T  {}\mrightarrow{}  T.  \mforall{}a,b:T.    (\mexists{}n:\mBbbN{}.  (b  =  (f\^{}n  a))  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}k.  (b  =  (f\^{}n  a)))))))



Date html generated: 2016_05_15-PM-04_11_42
Last ObjectModification: 2016_01_16-AM-11_06_27

Theory : general


Home Index