Nuprl Lemma : decidable__sublist-rec
∀[T:Type]. ∀l1,l2:T List.  ((∀x,y:T.  Dec(x = y ∈ T)) ⇒ Dec(sublist-rec(T;l1;l2)))
Proof
Definitions occuring in Statement : 
sublist-rec: sublist-rec(T;l1;l2), 
list: T List, 
decidable: Dec(P), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
prop: ℙ, 
or: P ∨ Q, 
sublist-rec: sublist-rec(T;l1;l2), 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
top: Top, 
so_apply: x[s1;s2;s3], 
cons: [a / b], 
decidable: Dec(P), 
guard: {T}, 
and: P ∧ Q, 
cand: A c∧ B, 
not: ¬A, 
false: False, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q
Lemmas referenced : 
list_induction, 
all_wf, 
list_wf, 
decidable_wf, 
sublist-rec_wf, 
equal_wf, 
list-cases, 
list_ind_nil_lemma, 
decidable__true, 
product_subtype_list, 
list_ind_cons_lemma, 
decidable__false, 
cons_wf, 
and_wf, 
not_wf, 
or_wf, 
nil_wf, 
true_wf, 
decidable_functionality, 
iff_weakening_uiff, 
sublist-rec-nil-iff
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
cut, 
thin, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
rename, 
dependent_functionElimination, 
universeEquality, 
unionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
promote_hyp, 
hypothesis_subsumption, 
productElimination, 
inlFormation, 
inrFormation, 
independent_pairFormation
Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(sublist-rec(T;l1;l2)))
Date html generated:
2016_05_15-PM-03_34_06
Last ObjectModification:
2015_12_27-PM-01_13_14
Theory : general
Home
Index