Nuprl Lemma : decidable__sublist-rec

[T:Type]. ∀l1,l2:T List.  ((∀x,y:T.  Dec(x y ∈ T))  Dec(sublist-rec(T;l1;l2)))


Proof




Definitions occuring in Statement :  sublist-rec: sublist-rec(T;l1;l2) list: List decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] prop: or: P ∨ Q sublist-rec: sublist-rec(T;l1;l2) so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons: [a b] decidable: Dec(P) guard: {T} and: P ∧ Q cand: c∧ B not: ¬A false: False iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  list_induction all_wf list_wf decidable_wf sublist-rec_wf equal_wf list-cases list_ind_nil_lemma decidable__true product_subtype_list list_ind_cons_lemma decidable__false cons_wf and_wf not_wf or_wf nil_wf true_wf decidable_functionality iff_weakening_uiff sublist-rec-nil-iff
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation cut thin lemma_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality hypothesis independent_functionElimination because_Cache rename dependent_functionElimination universeEquality unionElimination isect_memberEquality voidElimination voidEquality promote_hyp hypothesis_subsumption productElimination inlFormation inrFormation independent_pairFormation

Latex:
\mforall{}[T:Type].  \mforall{}l1,l2:T  List.    ((\mforall{}x,y:T.    Dec(x  =  y))  {}\mRightarrow{}  Dec(sublist-rec(T;l1;l2)))



Date html generated: 2016_05_15-PM-03_34_06
Last ObjectModification: 2015_12_27-PM-01_13_14

Theory : general


Home Index