Nuprl Lemma : do-apply-p-restrict

[A,B:Type]. ∀[f:A ⟶ (B Top)]. ∀[P:A ⟶ ℙ]. ∀[p:∀x:A. Dec(P[x])]. ∀[x:A].
  do-apply(p-restrict(f;p);x) do-apply(f;x) ∈ supposing ↑can-apply(p-restrict(f;p);x)


Proof




Definitions occuring in Statement :  p-restrict: p-restrict(f;p) do-apply: do-apply(f;x) can-apply: can-apply(f;x) assert: b decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] top: Top prop: so_apply: x[s] all: x:A. B[x] function: x:A ⟶ B[x] union: left right universe: Type equal: t ∈ T
Definitions unfolded in proof :  p-restrict: p-restrict(f;p) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a prop: so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B and: P ∧ Q squash: T true: True guard: {T} uiff: uiff(P;Q) iff: ⇐⇒ Q rev_implies:  Q implies:  Q
Lemmas referenced :  assert_wf can-apply_wf p-compose_wf top_wf p-filter_wf all_wf decidable_wf equal_wf do-apply_wf do-apply-p-filter assert_functionality_wrt_uiff squash_wf true_wf iff_weakening_equal do-apply-compose can-apply-compose-iff
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut hypothesis extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality lambdaEquality applyEquality functionExtensionality because_Cache isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry functionEquality universeEquality productElimination imageElimination independent_isectElimination imageMemberEquality baseClosed unionEquality natural_numberEquality independent_functionElimination

Latex:
\mforall{}[A,B:Type].  \mforall{}[f:A  {}\mrightarrow{}  (B  +  Top)].  \mforall{}[P:A  {}\mrightarrow{}  \mBbbP{}].  \mforall{}[p:\mforall{}x:A.  Dec(P[x])].  \mforall{}[x:A].
    do-apply(p-restrict(f;p);x)  =  do-apply(f;x)  supposing  \muparrow{}can-apply(p-restrict(f;p);x)



Date html generated: 2017_10_01-AM-09_14_16
Last ObjectModification: 2017_07_26-PM-04_49_25

Theory : general


Home Index