Nuprl Lemma : do-apply-p-restrict
∀[A,B:Type]. ∀[f:A ⟶ (B + Top)]. ∀[P:A ⟶ ℙ]. ∀[p:∀x:A. Dec(P[x])]. ∀[x:A].
do-apply(p-restrict(f;p);x) = do-apply(f;x) ∈ B supposing ↑can-apply(p-restrict(f;p);x)
Proof
Definitions occuring in Statement :
p-restrict: p-restrict(f;p)
,
do-apply: do-apply(f;x)
,
can-apply: can-apply(f;x)
,
assert: ↑b
,
decidable: Dec(P)
,
uimplies: b supposing a
,
uall: ∀[x:A]. B[x]
,
top: Top
,
prop: ℙ
,
so_apply: x[s]
,
all: ∀x:A. B[x]
,
function: x:A ⟶ B[x]
,
union: left + right
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
p-restrict: p-restrict(f;p)
,
uall: ∀[x:A]. B[x]
,
member: t ∈ T
,
uimplies: b supposing a
,
prop: ℙ
,
so_lambda: λ2x.t[x]
,
so_apply: x[s]
,
subtype_rel: A ⊆r B
,
and: P ∧ Q
,
squash: ↓T
,
true: True
,
guard: {T}
,
uiff: uiff(P;Q)
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
implies: P
⇒ Q
Lemmas referenced :
assert_wf,
can-apply_wf,
p-compose_wf,
top_wf,
p-filter_wf,
all_wf,
decidable_wf,
equal_wf,
do-apply_wf,
do-apply-p-filter,
assert_functionality_wrt_uiff,
squash_wf,
true_wf,
iff_weakening_equal,
do-apply-compose,
can-apply-compose-iff
Rules used in proof :
sqequalSubstitution,
sqequalRule,
sqequalReflexivity,
sqequalTransitivity,
computationStep,
isect_memberFormation,
introduction,
cut,
hypothesis,
extract_by_obid,
sqequalHypSubstitution,
isectElimination,
thin,
cumulativity,
hypothesisEquality,
lambdaEquality,
applyEquality,
functionExtensionality,
because_Cache,
isect_memberEquality,
axiomEquality,
equalityTransitivity,
equalitySymmetry,
functionEquality,
universeEquality,
productElimination,
imageElimination,
independent_isectElimination,
imageMemberEquality,
baseClosed,
unionEquality,
natural_numberEquality,
independent_functionElimination
Latex:
\mforall{}[A,B:Type]. \mforall{}[f:A {}\mrightarrow{} (B + Top)]. \mforall{}[P:A {}\mrightarrow{} \mBbbP{}]. \mforall{}[p:\mforall{}x:A. Dec(P[x])]. \mforall{}[x:A].
do-apply(p-restrict(f;p);x) = do-apply(f;x) supposing \muparrow{}can-apply(p-restrict(f;p);x)
Date html generated:
2017_10_01-AM-09_14_16
Last ObjectModification:
2017_07_26-PM-04_49_25
Theory : general
Home
Index