Nuprl Lemma : fseg_length

[T:Type]. ∀[l1,l2:T List].  ||l1|| ≤ ||l2|| supposing fseg(T;l1;l2)


Proof




Definitions occuring in Statement :  fseg: fseg(T;L1;L2) length: ||as|| list: List uimplies: supposing a uall: [x:A]. B[x] le: A ≤ B universe: Type
Definitions unfolded in proof :  fseg: fseg(T;L1;L2) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a exists: x:A. B[x] squash: T prop: subtype_rel: A ⊆B top: Top true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q le: A ≤ B satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  le_wf squash_wf true_wf length_wf length_append subtype_rel_list top_wf iff_weakening_equal non_neg_length decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermVar_wf itermAdd_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_var_lemma int_term_value_add_lemma int_term_value_constant_lemma int_formula_prop_wf less_than'_wf exists_wf list_wf equal_wf append_wf
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin hypothesis applyEquality lambdaEquality imageElimination extract_by_obid isectElimination hypothesisEquality equalityTransitivity equalitySymmetry intEquality cumulativity independent_isectElimination isect_memberEquality voidElimination voidEquality because_Cache natural_numberEquality imageMemberEquality baseClosed universeEquality independent_functionElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll hyp_replacement Error :applyLambdaEquality,  independent_pairEquality axiomEquality

Latex:
\mforall{}[T:Type].  \mforall{}[l1,l2:T  List].    ||l1||  \mleq{}  ||l2||  supposing  fseg(T;l1;l2)



Date html generated: 2016_10_25-AM-10_45_22
Last ObjectModification: 2016_07_12-AM-06_55_27

Theory : general


Home Index