Nuprl Lemma : iseg_antisymmetry

[T:Type]. ∀[as,bs:T List].  (as bs ∈ (T List)) supposing (bs ≤ as and as ≤ bs)


Proof




Definitions occuring in Statement :  iseg: l1 ≤ l2 list: List uimplies: supposing a uall: [x:A]. B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] uimplies: supposing a prop: so_apply: x[s] implies:  Q all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q subtype_rel: A ⊆B top: Top not: ¬A false: False assert: b ifthenelse: if then else fi  bfalse: ff squash: T true: True guard: {T}
Lemmas referenced :  list_induction uall_wf list_wf isect_wf iseg_wf equal_wf nil_wf equal-wf-base-T iseg_nil cons_wf assert_wf null_wf3 assert_elim subtype_rel_list top_wf null_cons_lemma bfalse_wf btrue_neq_bfalse cons_iseg
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality sqequalRule lambdaEquality cumulativity hypothesis independent_functionElimination because_Cache baseClosed isect_memberEquality axiomEquality equalityTransitivity equalitySymmetry lambdaFormation rename dependent_functionElimination productElimination addLevel independent_isectElimination applyEquality voidElimination voidEquality universeEquality levelHypothesis promote_hyp isectEquality imageElimination natural_numberEquality imageMemberEquality

Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (as  =  bs)  supposing  (bs  \mleq{}  as  and  as  \mleq{}  bs)



Date html generated: 2018_05_21-PM-06_46_23
Last ObjectModification: 2017_07_26-PM-04_56_09

Theory : general


Home Index