Nuprl Lemma : iseg_antisymmetry
∀[T:Type]. ∀[as,bs:T List].  (as = bs ∈ (T List)) supposing (bs ≤ as and as ≤ bs)
Proof
Definitions occuring in Statement : 
iseg: l1 ≤ l2, 
list: T List, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x.t[x], 
uimplies: b supposing a, 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
subtype_rel: A ⊆r B, 
top: Top, 
not: ¬A, 
false: False, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
squash: ↓T, 
true: True, 
guard: {T}
Lemmas referenced : 
list_induction, 
uall_wf, 
list_wf, 
isect_wf, 
iseg_wf, 
equal_wf, 
nil_wf, 
equal-wf-base-T, 
iseg_nil, 
cons_wf, 
assert_wf, 
null_wf3, 
assert_elim, 
subtype_rel_list, 
top_wf, 
null_cons_lemma, 
bfalse_wf, 
btrue_neq_bfalse, 
cons_iseg
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
hypothesisEquality, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesis, 
independent_functionElimination, 
because_Cache, 
baseClosed, 
isect_memberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lambdaFormation, 
rename, 
dependent_functionElimination, 
productElimination, 
addLevel, 
independent_isectElimination, 
applyEquality, 
voidElimination, 
voidEquality, 
universeEquality, 
levelHypothesis, 
promote_hyp, 
isectEquality, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}[T:Type].  \mforall{}[as,bs:T  List].    (as  =  bs)  supposing  (bs  \mleq{}  as  and  as  \mleq{}  bs)
Date html generated:
2018_05_21-PM-06_46_23
Last ObjectModification:
2017_07_26-PM-04_56_09
Theory : general
Home
Index