Nuprl Lemma : l-ordered-from-upto-lt-nat-true
∀[n,m:ℕ].  (l-ordered(ℕ;x,y.x < y;[n, m)) 
⇐⇒ True)
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
from-upto: [n, m)
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
iff: P 
⇐⇒ Q
, 
true: True
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
prop: ℙ
, 
nat: ℕ
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
cand: A c∧ B
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
rev_implies: P 
⇐ Q
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
Lemmas referenced : 
l_before_wf, 
member-less_than, 
true_wf, 
l-ordered-from-upto-lt-nat, 
int_formula_prop_wf, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__le, 
nat_properties, 
subtype_rel_sets, 
less_than_wf, 
le_wf, 
and_wf, 
subtype_rel_list, 
from-upto_wf, 
nat_wf, 
l-ordered_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
independent_pairFormation, 
lambdaFormation, 
natural_numberEquality, 
lemma_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
setElimination, 
rename, 
hypothesisEquality, 
applyEquality, 
setEquality, 
intEquality, 
independent_isectElimination, 
sqequalRule, 
because_Cache, 
lambdaEquality, 
productElimination, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
independent_pairEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry
Latex:
\mforall{}[n,m:\mBbbN{}].    (l-ordered(\mBbbN{};x,y.x  <  y;[n,  m))  \mLeftarrow{}{}\mRightarrow{}  True)
Date html generated:
2016_05_15-PM-04_37_31
Last ObjectModification:
2016_01_16-AM-11_18_45
Theory : general
Home
Index