Nuprl Lemma : l-ordered-from-upto-lt-nat-true

[n,m:ℕ].  (l-ordered(ℕ;x,y.x < y;[n, m)) ⇐⇒ True)


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) from-upto: [n, m) nat: less_than: a < b uall: [x:A]. B[x] iff: ⇐⇒ Q true: True
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T iff: ⇐⇒ Q and: P ∧ Q implies:  Q true: True prop: nat: subtype_rel: A ⊆B uimplies: supposing a so_lambda: λ2x.t[x] so_apply: x[s] all: x:A. B[x] cand: c∧ B ge: i ≥  decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False not: ¬A top: Top so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] rev_implies:  Q l-ordered: l-ordered(T;x,y.R[x; y];L)
Lemmas referenced :  l_before_wf member-less_than true_wf l-ordered-from-upto-lt-nat int_formula_prop_wf int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma itermVar_wf itermConstant_wf intformle_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__le nat_properties subtype_rel_sets less_than_wf le_wf and_wf subtype_rel_list from-upto_wf nat_wf l-ordered_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut independent_pairFormation lambdaFormation natural_numberEquality lemma_by_obid sqequalHypSubstitution isectElimination thin hypothesis setElimination rename hypothesisEquality applyEquality setEquality intEquality independent_isectElimination sqequalRule because_Cache lambdaEquality productElimination dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality isect_memberEquality voidElimination voidEquality computeAll independent_pairEquality axiomEquality equalityTransitivity equalitySymmetry

Latex:
\mforall{}[n,m:\mBbbN{}].    (l-ordered(\mBbbN{};x,y.x  <  y;[n,  m))  \mLeftarrow{}{}\mRightarrow{}  True)



Date html generated: 2016_05_15-PM-04_37_31
Last ObjectModification: 2016_01_16-AM-11_18_45

Theory : general


Home Index