Nuprl Lemma : l-ordered-from-upto-lt-nat

[n,m:ℕ].  l-ordered(ℕ;x,y.x < y;[n, m))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) from-upto: [n, m) nat: less_than: a < b uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] iff: ⇐⇒ Q rev_implies:  Q implies:  Q true: True exists: x:A. B[x] ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A top: Top prop: l-ordered: l-ordered(T;x,y.R[x; y];L) subtype_rel: A ⊆B le: A ≤ B so_lambda: λ2x.t[x] so_apply: x[s] cand: c∧ B squash: T label: ...$L... t guard: {T} sq_type: SQType(T)
Lemmas referenced :  decidable__le from-upto-is-nil l-ordered-nil-true less_than_wf nat_wf subtract_wf nat_properties satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf le_wf decidable__equal_int intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma equal_wf intformless_wf int_formula_prop_less_lemma ge_wf member-less_than l_before_wf from-upto_wf from-upto-nil l-ordered-nil subtype_rel_list subtype_rel_sets l-ordered_wf squash_wf true_wf list_wf from-upto-decomp-last decidable__lt strong-subtype-equal-lists strong-subtype-set3 strong-subtype-self append_wf cons_wf nil_wf iff_weakening_equal l-ordered-append subtype_base_sq int_subtype_base l-ordered-single member_singleton from-upto-member-nat l-ordered-cons l_member_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution dependent_functionElimination thin setElimination rename hypothesisEquality hypothesis unionElimination isectElimination because_Cache productElimination independent_pairFormation independent_isectElimination sqequalRule lambdaEquality independent_functionElimination natural_numberEquality dependent_pairFormation dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality computeAll addEquality intWeakElimination lambdaFormation applyEquality setEquality productEquality imageElimination equalityTransitivity equalitySymmetry functionEquality cumulativity universeEquality imageMemberEquality baseClosed instantiate applyLambdaEquality hyp_replacement

Latex:
\mforall{}[n,m:\mBbbN{}].    l-ordered(\mBbbN{};x,y.x  <  y;[n,  m))



Date html generated: 2018_05_21-PM-07_37_41
Last ObjectModification: 2017_07_26-PM-05_11_58

Theory : general


Home Index