Nuprl Lemma : l-ordered-from-upto-lt-nat
∀[n,m:ℕ].  l-ordered(ℕ;x,y.x < y;[n, m))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
from-upto: [n, m)
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
true: True
, 
exists: ∃x:A. B[x]
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
false: False
, 
not: ¬A
, 
top: Top
, 
prop: ℙ
, 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
subtype_rel: A ⊆r B
, 
le: A ≤ B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
cand: A c∧ B
, 
squash: ↓T
, 
label: ...$L... t
, 
guard: {T}
, 
sq_type: SQType(T)
Lemmas referenced : 
decidable__le, 
from-upto-is-nil, 
l-ordered-nil-true, 
less_than_wf, 
nat_wf, 
subtract_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
equal_wf, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
member-less_than, 
l_before_wf, 
from-upto_wf, 
from-upto-nil, 
l-ordered-nil, 
subtype_rel_list, 
subtype_rel_sets, 
l-ordered_wf, 
squash_wf, 
true_wf, 
list_wf, 
from-upto-decomp-last, 
decidable__lt, 
strong-subtype-equal-lists, 
strong-subtype-set3, 
strong-subtype-self, 
append_wf, 
cons_wf, 
nil_wf, 
iff_weakening_equal, 
l-ordered-append, 
subtype_base_sq, 
int_subtype_base, 
l-ordered-single, 
member_singleton, 
from-upto-member-nat, 
l-ordered-cons, 
l_member_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
hypothesis, 
unionElimination, 
isectElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
independent_functionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
intWeakElimination, 
lambdaFormation, 
applyEquality, 
setEquality, 
productEquality, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
cumulativity, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}[n,m:\mBbbN{}].    l-ordered(\mBbbN{};x,y.x  <  y;[n,  m))
Date html generated:
2018_05_21-PM-07_37_41
Last ObjectModification:
2017_07_26-PM-05_11_58
Theory : general
Home
Index