Nuprl Lemma : map-square-board-cell

[n:ℕ]. ∀[T1,T2:Type]. ∀[f:ℕn ⟶ ℕn ⟶ T1 ⟶ T2]. ∀[b:square-board(n;T1)]. ∀[i,j:ℕn].
  (board-cell(map-square-board(i,j,v.f[i;j;v];b);i;j) f[i;j;board-cell(b;i;j)] ∈ T2)


Proof




Definitions occuring in Statement :  board-cell: board-cell(b;i;j) map-square-board: map-square-board(i,j,v.f[i; j; v];b) square-board: square-board(n;T) int_seg: {i..j-} nat: uall: [x:A]. B[x] so_apply: x[s1;s2;s3] function: x:A ⟶ B[x] natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T square-board: square-board(n;T) board-cell: board-cell(b;i;j) map-square-board: map-square-board(i,j,v.f[i; j; v];b) nat: top: Top subtype_rel: A ⊆B uimplies: supposing a and: P ∧ Q int_seg: {i..j-} lelt: i ≤ j < k guard: {T} ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A prop: le: A ≤ B less_than: a < b squash: T true: True iff: ⇐⇒ Q rev_implies:  Q so_apply: x[s1;s2;s3]
Lemmas referenced :  length_wf iff_weakening_equal true_wf squash_wf less_than_wf int_term_value_constant_lemma int_formula_prop_le_lemma itermConstant_wf intformle_wf decidable__le select_wf lelt_wf int_formula_prop_wf int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_not_lemma int_formula_prop_and_lemma intformeq_wf itermVar_wf intformless_wf intformnot_wf intformand_wf satisfiable-full-omega-tt decidable__lt nat_properties int_seg_properties top_wf list_wf subtype_rel_list select-map-index nat_wf square-board_wf int_seg_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalHypSubstitution setElimination thin rename hypothesis lemma_by_obid isectElimination natural_numberEquality hypothesisEquality sqequalRule isect_memberEquality axiomEquality because_Cache functionEquality universeEquality voidElimination voidEquality applyEquality independent_isectElimination lambdaEquality productElimination dependent_set_memberEquality independent_pairFormation equalityTransitivity equalitySymmetry dependent_functionElimination unionElimination dependent_pairFormation int_eqEquality intEquality computeAll cumulativity imageElimination imageMemberEquality baseClosed independent_functionElimination

Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T1,T2:Type].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  T1  {}\mrightarrow{}  T2].  \mforall{}[b:square-board(n;T1)].  \mforall{}[i,j:\mBbbN{}n].
    (board-cell(map-square-board(i,j,v.f[i;j;v];b);i;j)  =  f[i;j;board-cell(b;i;j)])



Date html generated: 2016_05_15-PM-03_14_01
Last ObjectModification: 2016_01_16-AM-10_47_26

Theory : general


Home Index