Nuprl Lemma : map-square-board-cell
∀[n:ℕ]. ∀[T1,T2:Type]. ∀[f:ℕn ⟶ ℕn ⟶ T1 ⟶ T2]. ∀[b:square-board(n;T1)]. ∀[i,j:ℕn].
  (board-cell(map-square-board(i,j,v.f[i;j;v];b);i;j) = f[i;j;board-cell(b;i;j)] ∈ T2)
Proof
Definitions occuring in Statement : 
board-cell: board-cell(b;i;j), 
map-square-board: map-square-board(i,j,v.f[i; j; v];b), 
square-board: square-board(n;T), 
int_seg: {i..j-}, 
nat: ℕ, 
uall: ∀[x:A]. B[x], 
so_apply: x[s1;s2;s3], 
function: x:A ⟶ B[x], 
natural_number: $n, 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
square-board: square-board(n;T), 
board-cell: board-cell(b;i;j), 
map-square-board: map-square-board(i,j,v.f[i; j; v];b), 
nat: ℕ, 
top: Top, 
subtype_rel: A ⊆r B, 
uimplies: b supposing a, 
and: P ∧ Q, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
guard: {T}, 
ge: i ≥ j , 
all: ∀x:A. B[x], 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
implies: P ⇒ Q, 
not: ¬A, 
prop: ℙ, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
true: True, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
so_apply: x[s1;s2;s3]
Lemmas referenced : 
length_wf, 
iff_weakening_equal, 
true_wf, 
squash_wf, 
less_than_wf, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
itermConstant_wf, 
intformle_wf, 
decidable__le, 
select_wf, 
lelt_wf, 
int_formula_prop_wf, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_and_lemma, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
intformnot_wf, 
intformand_wf, 
satisfiable-full-omega-tt, 
decidable__lt, 
nat_properties, 
int_seg_properties, 
top_wf, 
list_wf, 
subtype_rel_list, 
select-map-index, 
nat_wf, 
square-board_wf, 
int_seg_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalHypSubstitution, 
setElimination, 
thin, 
rename, 
hypothesis, 
lemma_by_obid, 
isectElimination, 
natural_numberEquality, 
hypothesisEquality, 
sqequalRule, 
isect_memberEquality, 
axiomEquality, 
because_Cache, 
functionEquality, 
universeEquality, 
voidElimination, 
voidEquality, 
applyEquality, 
independent_isectElimination, 
lambdaEquality, 
productElimination, 
dependent_set_memberEquality, 
independent_pairFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
cumulativity, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
independent_functionElimination
Latex:
\mforall{}[n:\mBbbN{}].  \mforall{}[T1,T2:Type].  \mforall{}[f:\mBbbN{}n  {}\mrightarrow{}  \mBbbN{}n  {}\mrightarrow{}  T1  {}\mrightarrow{}  T2].  \mforall{}[b:square-board(n;T1)].  \mforall{}[i,j:\mBbbN{}n].
    (board-cell(map-square-board(i,j,v.f[i;j;v];b);i;j)  =  f[i;j;board-cell(b;i;j)])
Date html generated:
2016_05_15-PM-03_14_01
Last ObjectModification:
2016_01_16-AM-10_47_26
Theory : general
Home
Index