Nuprl Lemma : rotate-by-cyclic-map

[n,i:ℕ].  rotate-by(n;i) ∈ cyclic-map(ℕn) supposing gcd(i;n) 1 ∈ ℤ


Proof




Definitions occuring in Statement :  cyclic-map: cyclic-map(T) rotate-by: rotate-by(n;i) gcd: gcd(a;b) int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] member: t ∈ T natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a cyclic-map: cyclic-map(T) prop: all: x:A. B[x] nat: injection: A →⟶ B iff: ⇐⇒ Q and: P ∧ Q implies:  Q exists: x:A. B[x] sq_type: SQType(T) guard: {T} so_lambda: λ2x.t[x] so_apply: x[s]
Lemmas referenced :  equal_wf gcd_wf nat_wf rotate-by_wf rotate-by-injection inject_wf int_seg_wf rotate-by-transitive less_than_wf subtype_base_sq int_subtype_base fun_exp_wf all_wf exists_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut dependent_set_memberEquality sqequalHypSubstitution hypothesis sqequalRule axiomEquality equalityTransitivity equalitySymmetry lemma_by_obid isectElimination thin intEquality dependent_functionElimination setElimination rename hypothesisEquality natural_numberEquality isect_memberEquality because_Cache productElimination independent_functionElimination lambdaFormation dependent_pairFormation instantiate cumulativity independent_isectElimination applyEquality lambdaEquality

Latex:
\mforall{}[n,i:\mBbbN{}].    rotate-by(n;i)  \mmember{}  cyclic-map(\mBbbN{}n)  supposing  gcd(i;n)  =  1



Date html generated: 2016_05_15-PM-06_20_34
Last ObjectModification: 2015_12_27-PM-00_05_51

Theory : general


Home Index