Nuprl Lemma : rotate-by-cyclic-map
∀[n,i:ℕ].  rotate-by(n;i) ∈ cyclic-map(ℕn) supposing gcd(i;n) = 1 ∈ ℤ
Proof
Definitions occuring in Statement : 
cyclic-map: cyclic-map(T)
, 
rotate-by: rotate-by(n;i)
, 
gcd: gcd(a;b)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
cyclic-map: cyclic-map(T)
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
injection: A →⟶ B
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
implies: P 
⇒ Q
, 
exists: ∃x:A. B[x]
, 
sq_type: SQType(T)
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
Lemmas referenced : 
equal_wf, 
gcd_wf, 
nat_wf, 
rotate-by_wf, 
rotate-by-injection, 
inject_wf, 
int_seg_wf, 
rotate-by-transitive, 
less_than_wf, 
subtype_base_sq, 
int_subtype_base, 
fun_exp_wf, 
all_wf, 
exists_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
dependent_set_memberEquality, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
lemma_by_obid, 
isectElimination, 
thin, 
intEquality, 
dependent_functionElimination, 
setElimination, 
rename, 
hypothesisEquality, 
natural_numberEquality, 
isect_memberEquality, 
because_Cache, 
productElimination, 
independent_functionElimination, 
lambdaFormation, 
dependent_pairFormation, 
instantiate, 
cumulativity, 
independent_isectElimination, 
applyEquality, 
lambdaEquality
Latex:
\mforall{}[n,i:\mBbbN{}].    rotate-by(n;i)  \mmember{}  cyclic-map(\mBbbN{}n)  supposing  gcd(i;n)  =  1
Date html generated:
2016_05_15-PM-06_20_34
Last ObjectModification:
2015_12_27-PM-00_05_51
Theory : general
Home
Index