Nuprl Lemma : rotate-by-transitive
∀n,b:ℕ.  (gcd(b;n) = 1 ∈ ℤ supposing 0 < n ⇐⇒ ∀x,y:ℕn.  ∃k:ℕ. ((rotate-by(n;b)^k x) = y ∈ ℤ))
Proof
Definitions occuring in Statement : 
rotate-by: rotate-by(n;i), 
fun_exp: f^n, 
gcd: gcd(a;b), 
int_seg: {i..j-}, 
nat: ℕ, 
less_than: a < b, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
natural_number: $n, 
int: ℤ, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
implies: P ⇒ Q, 
member: t ∈ T, 
uall: ∀[x:A]. B[x], 
nat: ℕ, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rev_implies: P ⇐ Q, 
exists: ∃x:A. B[x], 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than: a < b, 
squash: ↓T, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
top: Top, 
prop: ℙ, 
sq_type: SQType(T), 
guard: {T}, 
modulus: a mod n, 
has-value: (a)↓, 
int_nzero: ℤ-o, 
nequal: a ≠ b ∈ T , 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
less_than': less_than'(a;b), 
true: True, 
bfalse: ff, 
bnot: ¬bb, 
ifthenelse: if b then t else f fi , 
assert: ↑b, 
nat_plus: ℕ+, 
gt: i > j, 
divides: b | a, 
rotate-by: rotate-by(n;i), 
remainder: n rem m, 
gcd: gcd(a;b), 
eq_int: (i =z j), 
gcd_p: GCD(a;b;y), 
cand: A c∧ B
Lemmas referenced : 
int_seg_wf, 
istype-less_than, 
istype-int, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
lelt_wf, 
istype-nat, 
int_seg_properties, 
nat_properties, 
decidable__lt, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
bezout_ident_n, 
gcd_sat_gcd_p, 
gcd_unique, 
subtype_base_sq, 
assoced_elim, 
decidable__equal_int, 
intformeq_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermMinus_wf, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_mul_lemma, 
int_term_value_minus_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
value-type-has-value, 
int-value-type, 
remainder_wfa, 
nequal_wf, 
lt_int_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
istype-top, 
eqff_to_assert, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
less_than_wf, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
rem_base_case, 
int_seg_subtype_nat, 
istype-false, 
subtype_rel_self, 
iff_weakening_equal, 
absval_wf, 
add_functionality_wrt_eq, 
rem_bounds_1, 
decidable__le, 
istype-le, 
div_rem_sum, 
divide_wfa, 
add-is-int-iff, 
multiply-is-int-iff, 
false_wf, 
pos_mul_arg_bounds, 
modulus-equal, 
modulus-is-rem, 
add_nat_wf, 
multiply_nat_wf, 
nat_wf, 
equal-wf-base, 
iterate-rotate-by, 
rem-one, 
zero-add, 
one_divs_any, 
divides_wf, 
gcd_wf, 
gcd_sat_pred, 
mul-commutes, 
zero-mul, 
divisor_bound, 
gcd-positive
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
independent_pairFormation, 
inhabitedIsType, 
hypothesisEquality, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
natural_numberEquality, 
setElimination, 
rename, 
hypothesis, 
sqequalRule, 
isectIsType, 
equalityIstype, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
independent_isectElimination, 
sqequalBase, 
equalitySymmetry, 
isect_memberFormation_alt, 
because_Cache, 
functionIsType, 
productIsType, 
productElimination, 
imageElimination, 
dependent_functionElimination, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
addEquality, 
multiplyEquality, 
equalityTransitivity, 
instantiate, 
cumulativity, 
minusEquality, 
applyLambdaEquality, 
hyp_replacement, 
callbyvalueReduce, 
dependent_set_memberEquality_alt, 
equalityElimination, 
lessCases, 
axiomSqEquality, 
isectIsTypeImplies, 
imageMemberEquality, 
promote_hyp, 
universeEquality, 
pointwiseFunctionality, 
productEquality
Latex:
\mforall{}n,b:\mBbbN{}.    (gcd(b;n)  =  1  supposing  0  <  n  \mLeftarrow{}{}\mRightarrow{}  \mforall{}x,y:\mBbbN{}n.    \mexists{}k:\mBbbN{}.  ((rotate-by(n;b)\^{}k  x)  =  y))
Date html generated:
2019_10_15-AM-11_20_13
Last ObjectModification:
2019_06_25-PM-01_30_45
Theory : general
Home
Index